San Diego Mesa College

Grade:

Physical Geology 101 Laboratory MINERALS II – Focus on Silicate and Carbonate Rock-Forming Minerals

I. INTRODUCTION: The purpose of this lab is you will improve your mineral identification skills and experience. The focus of today's mineral lab is identifying minerals in rocks. First, you will review silicate and carbonate minerals, with emphasis on mineral physical properties and identification skills; Second, you will identify minerals in igneous, sedimentary and metamorphic rocks, which is fundamental in the classification and identification of the three rock types.

The SILICATE MINERAL GROUP: Silicates make up the vast majority of rock-forming minerals (by volume) in the Earth's crust and mantle. Silicates are among our most important rock forming minerals – they are very common in all three major rock types: igneous, sedimentary and metamorphic. They all contain silica and oxygen, but can also contain various metal ions. Quartz and other forms of pure silica consist only of silica tetrahedron covalently bonded together in a three dimensional framework. However, in most silicates some of the silica covalent bonds are replaced by ionic bonds to metals, such as aluminum, iron, magnesium, sodium, potassium, and calcium. These bonds may create planes of weakness and a noticeable cleavage. You need to become familiar with each of these mineral's **color**, **hardness**, and **cleavage** to be good at identifying hand samples of these minerals.

Quartz, the feldspars (the two potassium feldspars and sodic plagioclase), and muscovite are the light-colored minerals rich in silica, sodium and potassium. The rest of the common igneous minerals are dark-colored, and are rich in iron, magnesium, and calcium (including calcic plagioclase). Note that all the common igneous minerals are hard except for the micas. Most have cleavage except for a few minerals, like quartz. Below is a color image of the 12 most common igneous rock-forming minerals, which includes magnetite, an iron oxide mineral common in mafic to intermediate igneous rocks.

The CARBONATE MINERAL GROUP: The carbonate minerals, which include calcite and dolomite – the two most common varieties - are found in sedimentary rocks such as limestone, and in metamorphic rocks, such as marble. The carbonate minerals and carbonate-rich rocks are generally light-colored, except for rocks that have abundant carbon in them. The carbonate minerals and their associated rocks are fairly easy to identify due to their softness and reaction to acid – two tests easily preformed in either the field or in lab. These minerals and their associated rocks are soft (H = 3 to 3

1/2) and will react to mild hydrochloric acid. All carbonate minerals have very well-developed rhombic cleavage (three sets of cleavage not at 90) - easy to spot if the crystals are large enough to see.

Calcite is the most common carbonate mineral, with a chemical formula of CaCO₃. Dolomite is less common in nature, with a very chemistry except that it also has magnesium MgCaCO₃. Most limestones and marbles consist of typically 80% or higher of these minerals, most typically calcite.

Gypsum is actually a sulfate-group mineral and is a exclusively found in sedimentary rocks. Like the carbonate minerals, gypsum is light-colored, soft ($H = 2 \frac{1}{2}$), with 3 sets of cleavage, but it is nonreactive to acid. Halite is another exclusively-sedimentary mineral, and it is also light-colored, soft (H=3) with 3 sets of cleavage, but it's nonreactive to acid and tastes salty. Both gypsum and halite are associated with sedimentary evaporate deposits.

II. COMMON ROCK-FORMING MINERAL PROPERTIES AND THEIR ASSOCIATED ROCK TYPES

Directions: Determine the color, hardness, cleavage, and associated rock types of the following mineral samples found in your reference set box. Carefully read the steps listed below:

1) Note color as either "Light" or "Dark"; AND note actual hue, like "white", "gray", "black", "brown", "green", or "violet".

Check that the first eight minerals are typically light-colored; the last eight minerals are typically light-colored 2) Note hardness as either "*Hard*" (5 1/2 and harder); or "*Soft*" (5 or softer).

3) Note number of sets of cleavage (0, 1, 2 or 3). Also note the angle between two or more sets (at/near 90° or not at 90°).

4) Other includes Acid, Magnetic or Taste tests: Acid fizz = "Fizz"; Magnetic="Mag"; Salty = Salt. If Other test(s) not needed/not done, then mark as "ND"

5) Finally, using your mineral glossary charts, list the names of rock that the mineral is most commonly associated with.

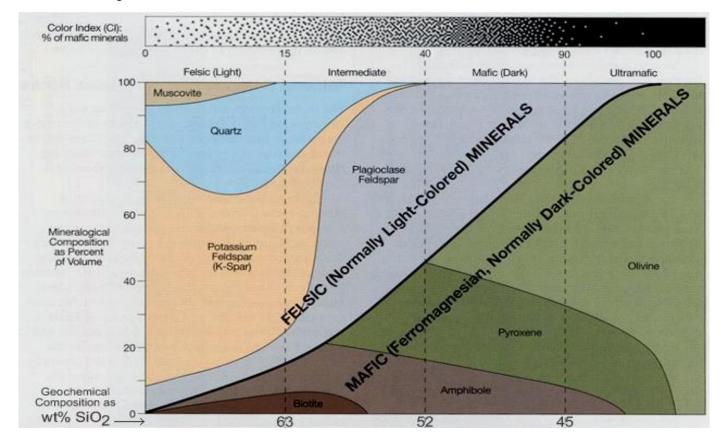
Reference Box #	Color (shade/hue)	<u>Hardness</u>	<u>Cleavage</u>	<u>Other</u>	Associated Rock Types
Olivine	/				Mafic/Ultarmafic Igneous
Augite(pyrx)	1			Interm	ediate/Mafic/Ultramafic Igneous
Hornblende(a	mph)/		<u> </u>	Intermed	iate/Mafic Igneous / Amphibolite
Biotite (mic	ca)/			Felsic	-Intermediate Igneous / Schists
Chlorite (mi	ica) /				Metamorphic Schist/Hornfels
Garnet	/			<u>Grani</u>	ite/ Metamorphic Schist/Gneiss
Tourmaline	e/				Granite Pegmatite
Magnetite	/		<u>Ir</u>	ntermedia	ate/Mafic Igneous / Sandstone
Quartz	/			Nun	nerous rocks of all three types
	eldspar / des Orthoclase and I			Fels	sic Igneous /Sandstones /Gneiss
Plagioclase I	Feldspar /	·		Fels	ic Igneous /Sandstones /Gneiss
Muscovite ((mica) /				Felsic Igneous /Schist /Gneiss
Kaolin (clay)/				Shales, Claystone/ Slate
Calcite	/				Limestone / Marble
Gypsum	/				Rock gypsum
Halite	/				Rock salt

III. UNKNOWN COMMON ROCK-FORMING MINERAL SAMPLE IDENTIFICATION:

Directions: Determine the color, hardness, cleavage, and other characterizing physical properties of the following unknown mineral samples. Finally name the unknown mineral based on the determined properties. Follow the steps listed below:

1) Note luster as either *metallic "M"* or *nonmetallic "NM"*.

- 2) Note color as either "Light" or "Dark"; AND note actual hue, like "white", "gray", "black", "green", or "violet".
- 3) Note hardness as either "Hard" (5 1/2 and harder); or "Soft" (5 or softer).
- 4) Note number of sets of cleavage: (0, 1, 2@90, 2not@90; 3@90; or 3not@90).


5) If you do the acid test, mark as "Pos" for fizz and "Neg" for no fizz. If test not needed, then mark as "NN"

6) If you did magnet test, mark "M" if magnetic or "NM" for nonmagnetic. If test not needed, then mark "NN".

7) Finally, using your mineral ID chart, List the name of the mineral that best fits your listed physical properties.

Samp#	<u>Color</u>	<u>Hardness</u>	<u>Cleavage</u>	Acid test	<u>Magnetic</u>	Mineral name
Α.	/					
В.	/					
C.	/					
D.	/					
	/					
	/					
	/					
	/					
J						
К.	/					
L.						

IV. IGNEOUS ROCK-FORMING MINERALS ABUNDANCES IN IGNEOUS ROCKS: Each of the common igneous rock-forming minerals varies in occurrence and abundance in the various types of igneous rocks, based on the chemistry of the magma or lava that they crystallized from. You need to become familiar with the igneous mineral abundance chart below, in terms of which specific minerals characterize each igneous rock type and the general proportion that each mineral contributes to the total mineral make-up of the rock. The COLOR INDEX (shown at top of figure below) helps to classify the mineral composition of the unknown igneous rock, but is only useful for course-grained rocks.

FELSIC IGNEOUS ROCK (Granite): Rich in potassium feldspars, sodic plagioclase and quartz, granites also have accessory minerals, including (but necessarily all present in same rock) biotite, muscovite, garnet, tourmaline and hornblende. Color index is low: between 0 and 20.

- 4. What is your estimated color index for the granite pictured above?
- 5. Light-colored minerals in above rock are most likely: _____, ____, and _____
- 6. Dark-colored minerals in the above rock are most likely: _____and/or _____

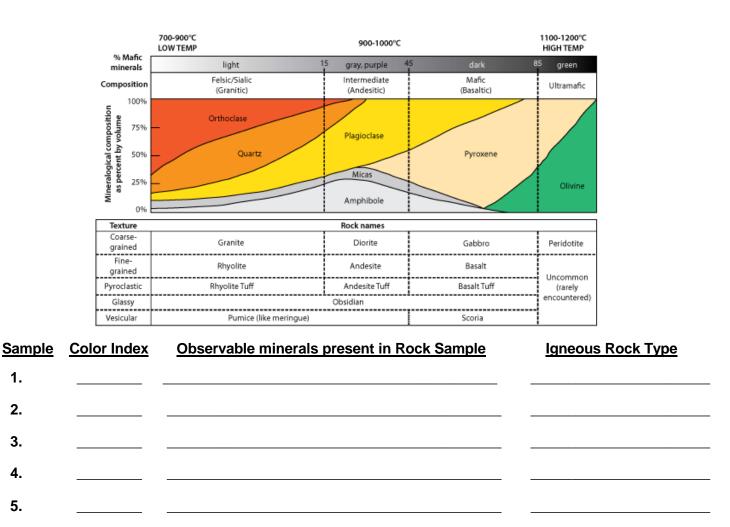
INTERMEDIATE IGNEOUS ROCK (Diorite): Rich in intermediate plagioclase and hornblende, diorites can also have accessory minerals including(but necessarily all present in same rock) quartz, pyroxene, biotite, and magnetite. Color index is mid range: between 20 and 40

4. What is your estimated color index for the diorite pictured above?

5. Light-colored minerals in above rock are most likely: _____, ____and _____

6. Dark-colored minerals in above rock are most likely: _____, _____, ______,

<u>MAFIC IGNEOUS ROCK (Gabbro)</u>: Rich in calcic plagioclase, pyroxenes, olivine, and hornblende, gabbros can also have accessory minerals, like magnetite. Color index is high: between 40 and 90.


4. What is your estimated color index for the gabbro pictured above?

5. The light-colored mineral in the above rock is most likely:

6. Dark-colored minerals in above rock are most likely: _____, _____, &/or _____

V. MINERAL IDENTIFICATION OF MINERALS IN UNKNOWN IGNEOUS ROCK SAMPLES

Directions: Do the following for each of the FIVE unknown coarse-grained igneous rock samples (1– 5) provided by your instructor: **1)** Determine the color index (0 to 100); **2)** Make your best determination as to what the light and dark minerals are in the hand sample; And **3**) List the igneous rock type, based on the color index (Felsic/Silicic, Intermediate, or Mafic). Note to use your igneous rock chart to help you answer both 1), 2) and 3). Use the microscope and the igneous rock chart on next page to help in the determination of the minerals.

VI. MINERAL IDENTIFICATION OF MINERALS IN UNKNOWN SEDIMENTARY ROCK SAMPLES

Directions: Do the following for each of the FOUR unknown sedimentary rock samples (6 - 9) provided by your instructor: **1)** Determine the rock hardness (Hard or Soft); **2)** Make your best determination as to what the most abundant mineral is the hand sample (Quartz, Clay, Mica or Calcite); And **3**) List the sedimentary rock type, based on the dominant mineral present. Note to use your sedimentary and metamorphic rock charts in the lab manual to help you. Use the acid test, microscope, and the sedimentary rock chart (including the one below) to help in the determination of the minerals and rock name.

Clastic 8	Bioclasti	c textu	ires					
Texture	ure Size		Clast Composition	Rounding	Sorting	Rock Name	Comments	Depositional Environment
			variable	angular poor		sedimentary breccia	large angular clasts - less transport	alluvial fan
			variable	rounded	poor conglomerate		large rounded clasts - more transport	alluvial fan, stream, beach
Clastic	2-1/16 mm	sand	quartz	rounded	well	quartz sandstone	"clean" sandstone - more transport	dunes, stream
0	2-1/16 mm	sand	feldspar, quartz, etc.	angular	mod-poor	arkose	"dirty" sandstone - less transport	alluvial fan, stream
	<1/16 mm	mud	-	-	well	mudstone	may split apart along bedding; may or may not "fizz"; easily scratched	floodplain, delta, shallow & deep marii
Bioclastic	>2mm gravel		shells	poor	poor	coquina	poorly-cemented shell fragments	beach
Biod	<1/16 mm	mud	shells		well	chalk	microscopic shells; "earthy"	shallow-deep marin
Chemica	al & Bioche	emical	textures				-	1
Texture	Compos	ition	Hardness	Cole	or	Rock Name	Comments	Depositiona Environmen
	calcite / Ca	CO3	H=3	variak	ble	limestone	will "fizz"; can be scratched by a nail	shallow marine, lake
Chemical	dolomite / CaMg(CO ₃) ₂		H=3	variat	ble	dolomite	will <u>not</u> "fizz" unless scratched; can be scratched by a nail	nearshore marine
Chen	silica / SiO _z		H=7	variak	ble	chert	will <u>not</u> "fizz"; <u>not</u> scratched by a nail	deep sea
	halite / Na qypsum / CaSC		H=2.5 H=2	clear-va white-va	669997	evaporites	soft, non-metallic minerals; halite is "salty"	playa
Bio	altered organic		soft	brown-black		coal	light in weight	swamp

<u>Sample</u>	<u>Hardness</u>	<u>Dominant Sed Mineral(s) Type in Rock Sample</u>	Most-Likely Rock Name
6.			
7.			
8.			
9.			

VII. MINERAL IDENTIFICATION OF MINERALS IN UNKNOWN METAMORPHIC ROCK SAMPLES

Directions: Do the following for each of the THREE unknown metamorphic rock samples (10-12) provided by your instructor: **1)** Determine the rock hardness (H or S); **2)** Make your best determination as to what the most abundant mineral is the hand sample. Common minerals include quartz, mica, feldspar, calcite, amphibole and garnet); And **3)** List the sedimentary rock type, based on the dominant mineral present. Note to use your metamorphic rock charts in the lab manual to help you. Use the acid test, microscope, and the metamorphic rock chart (including one below) to help in the determination of the minerals and rock name.

<u>Sample</u>	<u>Hardness</u>	Dominant Meta Mineral(s) Type in Rock Sample	Most-Likely Rock Name
10.			
11.			
12.			

Scheme for Wetamorphic Rock Identification													
TE	XTURE	GRAIN SIZE	с	COMPOSITION		N	TYPE OF METAMORPHISM		COMMENTS	ROCK NAME	MAP SYMBOL		
Q	L7	Fine									Low-grade metamorphism of shale	Slate	
FOLIATED	MINERAL	Fine to		QUARTZ FELDSPAR AMPHIBOLE					(Heat and pressure increases)		Foliation surfaces shiny from microscopic mica crystals	Phyllite	
		medium	MICA		PHIBOLE	GARNET	INE			Platy mica crystals visible from metamorphism of clay or feldspars	Schist		
	BAND- ING	Medium to coarse		0	H	AMPHI GARN PYROXENE			ţ		High-grade metamorphism; mineral types segregated into bands	Gneiss	
		Fine		Carbon		Regional		Metamorphism of bituminous coal	Anthracite coal				
	ED	Fine	Various minerals		Contact (heat)		Various rocks changed by heat from nearby magma/lava	Hornfels	メ キ キ キ モ モ モ モ モ モ モ モ モ モ モ モ モ				
	NONFOLIATED	Fine		Fine		Quartz					Metamorphism of quartz sandstone	Quartzite	
		to coarse	e Calcite and/or dolomite		— Regional — or contact		Metamorphism of limestone or dolostone	Marble					
		Coarse		Various minerals					Pebbles may be distorted or stretched	Metaconglomerate	0.0000		

Scheme for Metamorphic Rock Identification

VIII. Written Laboratory Reflection

Directions: Write a reflection of this second mineral lab activity, explaining its purpose, the methods used, the results obtained, and a brief personal reflection of what you enjoyed and learned about doing this lab (*3 points possible*). Answer the following 3-point question reflection set (fill in all the lines for full credit.)

1) What was the purpose of this lab? What did you actually discover and learn during this lab?

2) What did you enjoy most about this lab? Also, what was challenging or thought-provoking?

3) What are your constructive comments about the design and execution of this lab? What's good? What's bad? Offer suggestions for making the lab better