
Introductory Geology Lab

Geology 101 Lab Fall 2017 Mesa College Instructor: Ray Rector

First Day Agenda

- Course Description
- Review of Course Syllabus
- Safety Instruction
- Instructor Background
- Student Introductions
- Scientific Method Activity
- Units and Measurement Skills
- Unit Conversions Activity
- Density Measurement Activity

Course Description

- Hands-on, Inquiry-based Lab and Field Activities that Examine the Features and Processes of the Earth, Ocean and Atmosphere
- Topics Include:
 - Scientific Method
 - Topographic Mapping
 - Plate Tectonics
 - ★ Minerals
 - ★ Rocks
 - Geologic Dating
 - Structural Geology
 - Geologic Mapping
 - Shoreline, Desert and River Systems
 - Weather and Climate

Course Design

Laboratory-Based FormatCourse Activities Include:

- Group-centered, hands-on, inquiry-based lab exercises
- ⋆ Field trips
- Online interactive exercises
- Lab discussion forums
- Demonstrations
- Instructor presentations

Course Syllabus

- Basic Logistics
- Course Objectives
- Important Enrollment Dates
- Instructor's Attendance Policy
- Classroom Do's and Don'ts
- Grading
- Field Trips
- Extra Credit
 - <u>Classroom Website</u>
 - Schedule of Study
 - Safety Concerns

<u>www.geościrocks.com</u>

Mesa Geo 101 Lab Link

Wise Suggestions for my Students of Earth Science

- 50% Motivation 50% Perspiration
- SHOW UP for ALL laboratory meetings
- DO the Pre-lab assignment BEFORE the corresponding laboratory meeting
- ASK lots of questions
- BE PROACTIVE in lab and field activities and discussions
- HAVE FUN learning about the Earth

- Instructor's Academic Background
- Instructor's Connection with Ocean
- Instructor's Role in Classroom
- Instructor's Teaching Philosophy

(STOLY)

EARTH SCIENCE EDUCATION

California Single Subject Teaching Credential – Geosciences -California State University, San Marcos, CA

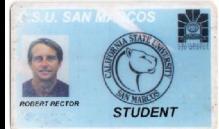
- > 35 graduate-level semester units completed; GPA = 3.9
- Cross-Cultural Language and Academic Development
- Additional emphasis of technology in the classroom

Earth Science Doctoral Program – Volcanism and Tectonics University of California Riverside, Riverside, CA.

- 38 graduate-level semester units completed; GPA = 3.9
- Graduate Division Fellowship
- Mineralogical Society of America scholarship

Master of Science Degree – Igneous Petrology San Diego State University, San Diego, CA

- > 35 graduate-level semester units completed; GPA=3.9
- Achievement Rewards for College Scientists Scholarship


Bachelor of Science Degree - Magna Cum Laude - Geology San Diego State University, San Diego, CA

- 172 semester units completed; GPA = 3.8
- > Outstanding Senior Research Award--College of Sciences
- Outstanding Research Award—Department Of Geology

Engineering Undergraduate Program

California State University, Northridge, CA

Marine Engineering emphasis

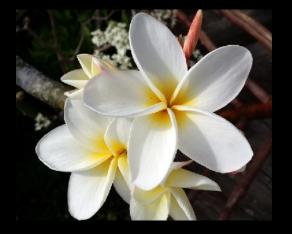
TEACHING EARTH SCIENCE

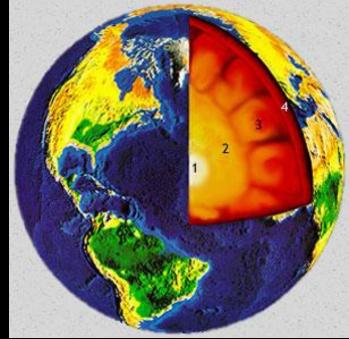
Cuyamaca College, El Cajon, CA Oceanography Lecture	2013 - Present
University of San Diego, San Diego, CA Earth Science Laboratory	2007 - Present
MiraCosta College, Oceanside, CA	2004 - Present
 San Diego Miramar College, San Diego, CA Geology Laboratory Online Oceanography Lecture 	2003 - Present
San Diego Mesa College, San Diego, CA Online Geology Lecture Geology Laboratory 	2002 - Present
University of California Riverside, Riverside, CA	1994-1997
 San Diego State University, San Diego, CA General geology laboratory Advanced field geology course in Baja, Mexico. 	1991-1993 10

Professor's Interests

Travel to Cool Places, Adventure, Hanging Out, and Partying with Fun and Interesting Friends

This Year's Big Adventure – The Big Island



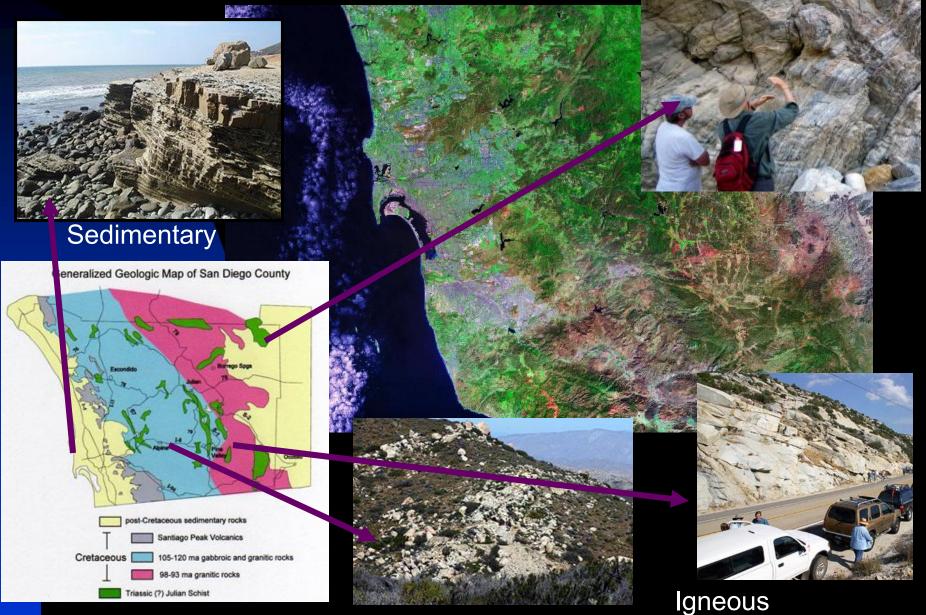

Who are You?

- Your Name Academic Focus Earth Passions
- Personanl Interests

Geology of Planet Earth

The Coastal Geology

Backcountry Geology


Desert Geology

Geology of San Diego County

Geology of San Diego

Metamorphic

Local Natural Hazards

Homes on cliffs of Pacifica, CA

Question:

What other geologic hazards do we face in San Diego?

What is Geology?

✓ Geology is the scientific study of the Earth

An interdisciplinary science

Seismic Studies

Marine Studies

Volcanic Studies

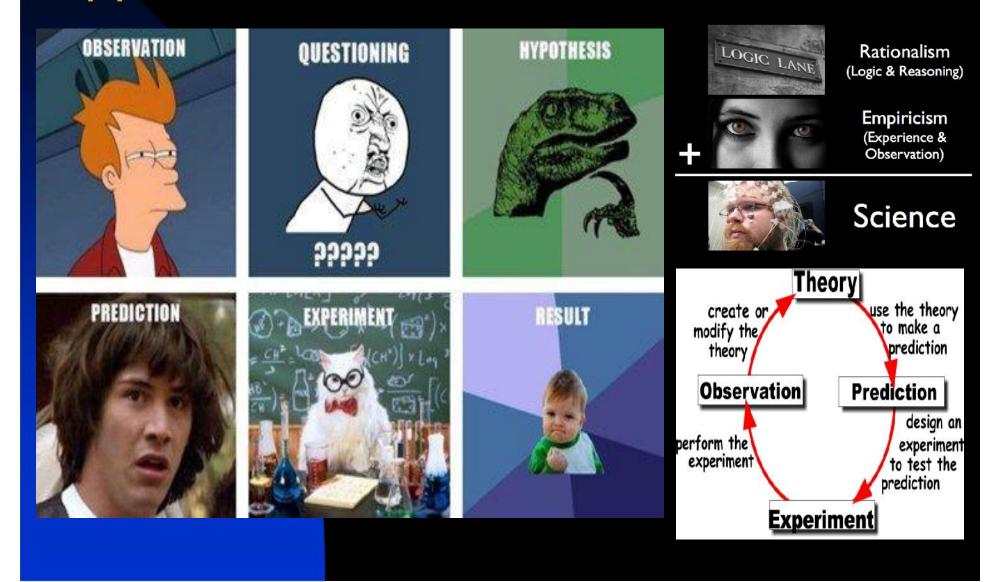
GEOLOGY --- an Interdisciplinary Science Geology integrates many different types of geosciences

• Mineralogy and Petrology - the study of minerals and rocks

- Marine geology the study of Earth's ocean bottom
- **Geochemistry** study of chemical nature of rocks, minerals and fluids
- Hydrology study of rivers, groundwater, flooding, dams
- Volcanology study of the nature and distribution of volcanoes
- Engineering geology- design and construction of structures
- Structural geology form and development of geologic structures
- Geophysics study of forces and mechanisms of geologic phenomena
- Environmental geology study of geological resources and pollution
- Petroleum geology Locate. assess, and extract oil and natural gas

What Do Geologists Do?

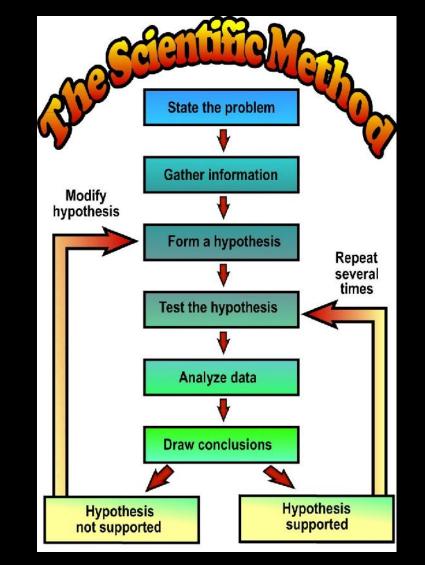
Answer: ...they do earth science.



Science defined: The investigation and acquisition of useful, reliable knowledge of earth's crust that is based on empirical observations (physical evidence).

- Earth scientists use a powerful way of thinking, that is rational, logical, and organized, called *scientific thinking*.
- Intelligence, imagination, creativity, inspiration, and luck are other important attributes of scientific study.
- Earth scientists use a powerful approach to inquiry called the scientific method.

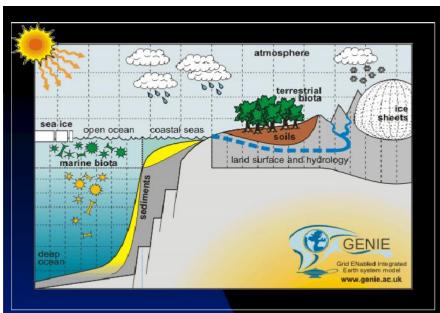
Central to science is community and peer review.


Today Geo Lab: *Investigation and Application of the Scientific Method*

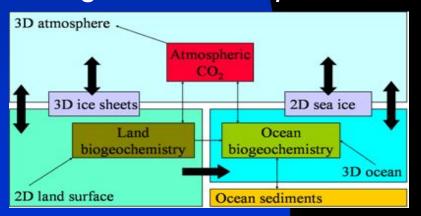
THE SCIENTIFIC METHOD


The Basic Components

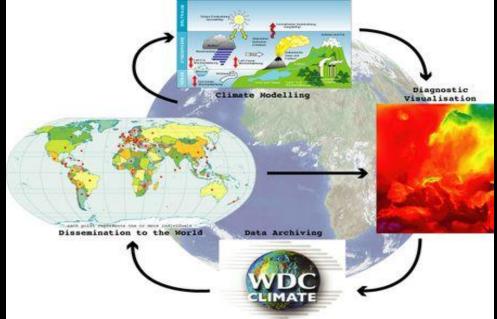
 Empirical Observations ✓ Questions / Problems ✓ Hypotheses / Models ✓ Predictions Tests / Experiments ✓ Analysis of Results ✓ Draw Conclusions ✓ Reevaluate Hypothesis

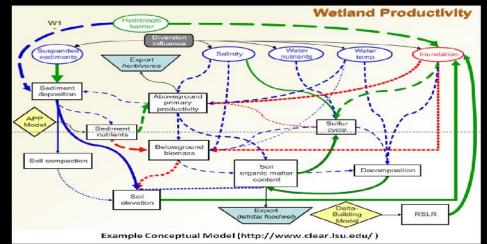

Note: The scientific method is NOT a recipe – it's a process 24

Hypotheses and Theories



Observations and Testing


- 1) A hypothesis is a simple explanation, model, or prediction of nature that requires testing (attempt to falsify or confirm).
- 2) Hypotheses are based on empirical physical evidence (data).
- 3) Hypotheses must be falsifiable (testable/predictable).
- 4) Hypotheses can never be proven as an absolute fact.
- 5) Hypotheses are always open to elimination or modification.
- 6) A theory is a broad, elegant, unifying explanation of a set of otherwise unconnected natural phenomena.
- A theory is established by the interconnection (framework) of well-tested and confirmed hypotheses that are, in turn, ²⁵ supported by an enormous amount of physical evidence.



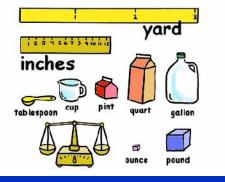
Purpose of Modeling: Understand how parts of the Earth operate and interact with each other – start simple and get more complicated

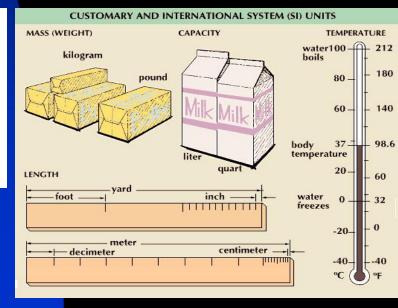
Scientific Modeling and Predicting

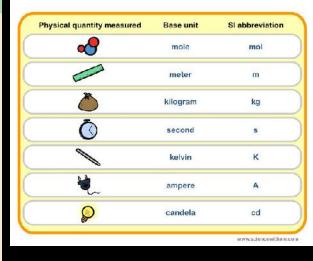
Units of Measurement

<u>US Standard</u> System of Units

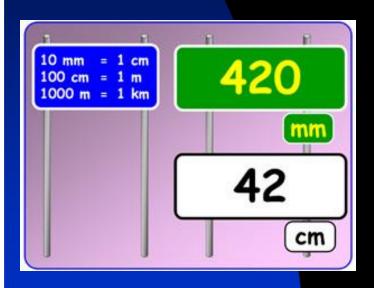
inch/foot square foot ounce/gallon ounce/pound second Fahrenheit


Measurable Physical


Quantities

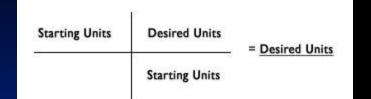

- 1) Distance -
- 2) Area -
- 3) Volume -
- 4) Mass -
- 5) Time -
- 6) Temperature -

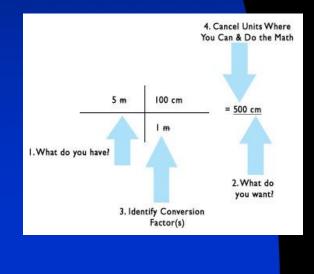
centimeter/meter square meter milliliter/liter gram/kilogram second Kelvin/Celsius

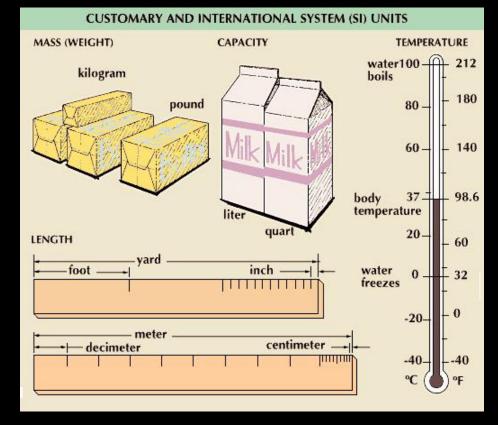


International Metric Units

Quantity measured	Unit	Symbol	Relationship		
	millimeter	mm	10 mm	=	1 cm
Length, width, distance, thickness,	centimeter	cm	100 cm	=	1 m
girth, etc.	meter	m			
	kilometer	km	1 km	=	1000 m
	milligram	mg	1000 mg	=	1 g
Mass	gram	g			
("weight")*	kilogram	kg	1 kg	=	1000 g
	metric ton	t	1 t	=	1000 kg
Time	second	S			
Temperature	degree Celsius	°C			
	square meter	m²			
Area	hectare	ha	1 ha	=	10 000 m²
	square kilometer	km²	1 km²	=	100 ha
	milliliter	mL	1000 mL	=	1 L
Volume	cubic centimeter	CM ³	1 cm ³	=	1 mL
	liter	L	1000 L	=	1 m³
	cubic meter	m³			
Speed, velocity	meter per second	m/s			
Speed, velocity	kilometer per hour	km/h	1 km/h	=	0.278 m/s


Metric Unit Prefixes


Prefi x	Symbo I	Facto r	Numerically	Name
giga	G	10 ⁹	1 000 000 000	billion**
mega	Μ	10 ⁶	1 000 000	million
kilo	k	10 ³	1 000	thousand
centi	С	10 ⁻²	0.01	hundredth
milli	m	10 ⁻³	0.001	thousandt h
micro	μ	10 ⁻⁶	0.000 001	millionth
nano	n	10 ⁻⁹	0.000 000 001	billionth**

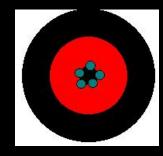

Converting Units of Measurement

Setting Up the Problem:

Example: Convert 15 m to ? cm

Converting Units

Make sure to:


- 1) Find the proper conversion factor for the two units
- 2) Set up the equation with all numeric values having a unit symbol
- 3) Do the conversion making sure that the old unit cancels

APPROXIMATE CONVERSIONS FROM ENGLISH UNITS TO SI UNITS							
SYMBOL	WHEN YOU KNOW	MULTIPLY BY (CF)	TO F	TO FIND S')L	
		LENGTH					
in	inches	25.4	millimeters	5	mm		
ft	feet	0.305	meters		m		
yd	yards	0.914	meters		m		
mi	miles	1.61	kilometers	;	km	km	
AREA							
in ²	square inches	645.2	square mi	llimeters	mm ²	mm ²	
ft²	square feet	0.093	square me	eters	m²		
yd²	square yard	0.836	square meters m ²		m²		
ac	acres	0.405	hectares ha		ha	ha	
mi ²	square miles	2.59	square kilometers km ²		km²		
		VOLUME					
fl oz	fluid ounces	29.57	milliliters mL		mL		
gal	gallons	3.785	liters L		L	L	
ft ³	cubic feet	0.028	cubic meters m ³		m ³		
yd³	cubic yards	0.765	cubic meters m ³				
NOTE: volumes greater than 1000 L shall be shown in m ³							
MASS							
oz	ounces	28.35	grams g		g		
lb	pounds	0.454	kilograms kg				
т	short tons (2000 lb)	0.907	megagrams (or Mg (or " "metric ton")		")		
	TEMPERATURE (exact degrees)						
°F	Fahrenheit	5 (F-32) ÷ 9	Celsius	S		° C	

Accuracy, Precision and Uncertainty in Measurement

- 1) **Accuracy** of the measurement refers to how close the measured value is to the true or accepted value.
- 2) **Precision** refers to how close together a group of measurements actually are to each other.
- Accuracy can be determined by only one measurement, while precision can only be determined with multiple measurements.
- 4) Precision has nothing to do with the true or accepted value of a measurement, so it is quite possible to be very precise and totally inaccurate.
- 5) When precision is high and accuracy is low, the fault can lie with the instrument.

Significant Digits or Figures

Rules For Significant Digits

- **1. Digits from 1-9 are always significant.**
- 2. Zeros between two other significant digits are always significant
- 3. One or more additional zeros to the right of both the decimal place and another significant digit are significant.
- 4. Zeros used solely for spacing the decimal point (placeholders) are not significant.

EXAMPLES	# Ol	F SIG. DIG.	COMMENT
453 g		3	All non-zero digits are always significant.
5057 L		4	Zeros between 2 sig. dig. are significant.
5.00 ml		3	Additional zeros to the right of decimal and a sig. dig. are significant.
0.007 km		1	Placeholders are not sig.

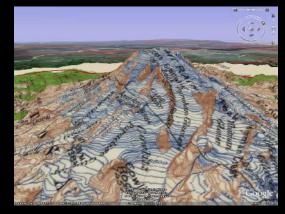

Application of the Scientific Method

Glitter Lamp Inquiry

Purpose: Use the scientific method to gain a better understanding of how a glitter lamp works as a dynamic system

Procedure:

Get into groups of 2 to 4. Make good observations, explanations, predictions, and tests on the lamp. Focus on the dynamic properties of the lamp.


Next Weeks Lab Topics

Topographic Maps

- Basic Concepts
- Reading
- Orientation

Pre-lab Exercises

- Read Topo Map Chapter in
 Lab Textbook
- Study Professor's Topo Map
- PowerPoint
- Print out the Topo Map Lab
 Worksheet
- Browse Instructor's Website
 @www.geoscirocks.com

