Earth's Continents and Seafloors

Physical Geology – GEOL100

Ray Rector - Instructor

OCEAN BASINS and CONTINENTAL PLATFORMS Key Concepts

I. Earth's rocky surface covered by of two types of crust

- Dense, thin, low-standing oceanic crust
- Light, thick, high-standing continental crust

II. Seafloor is divided into two topographic regions

- Shallow continental margins
- Deep-sea oceanic basins

III. Continental margins and Deep Ocean basins are fundamentally different

- Composition
- Structure
- Age
- Tectonic origin

IV. Ocean basins are rugged and have a wide variety of topographic features

- Mid-oceanic ridges and Transform fracture systems
- Abyssal Hills and Plains
- Oceanic islands, Seamounts, and Guyots
- Trenches and Island Arcs

Two Distinctive Types of Earth Crust

Orange and dark blue regions underlain by thick, high-standing granitic continental crust

Light blue regions underlain by thin, low-standing basaltic oceanic crust

Earth's Solid-Surface Topography

The Earth has two very distinctive topographic provinces: High-standing continental masses and low-standing ocean basins

Elevation Relief Profile of Earth Surface

- 1. Sea level
- 2. Continental shelf
- 3. Continental slope
- 4. The deep ocean floor
- 5. Mean depth of ocean
 - = 4 km below sea level
- 6. Mean altitude of land
 = 1 km above sea level
 7. Mt. Everest = 8848m
 8. Marianas Trench
 - = 11022m

Topography of Earth's Solid Surface

If Earth's ocean were removed the most distinctive feature from space would be its sinuous, scar-like mountain belt that wraps through the low-standing ocean basins – the 70,000 km-long mid-ocean ridge system

Topography of an Ocean Basin

PACIFIC OCEAN FLOOR

RAPHIC MAGAZINE

BERIA

The largest ocean basin on Earth is the Pacific Ocean basin where most of the planet's deep-sea trenches and active volcanic arcs are found

Topography of Continental Landmasses

The largest continental terrain province on Earth is Eurasia where most of the planet's tallest mountains are found

Earth's Ocean Basin Features

The Earth's ocean basins have a wide variety of seafloor features that form by different geologic processes.

Globally, the earth's seafloor can be divided into several marine provinces, based on crust type, water depth, topographic slope, landforms, and tectonic and sedimentary processes Mid-oceanic ridge and Transform fracture Abyssal Hills and Plains Oceanic islands, Seamounts, and Guyots Trenches and Island Arcs Continental Shelf, Slope, Canyons, and Rise

Earth's Continental Features

The Earth's continents have a wide variety of landmass features that form by different geologic processes.

Globally, the Earth's continents can be divided into several terrestrial provinces, based on crust type, age, elevation, topographic slope, landforms, and tectonic and sedimentary processes

Central cratonal shields / platforms Interior mountains, plateaus, plains, and lowlands Coastal mountains, plains, and lowlands Continental submarine margins: Shelf, Slope, Canyons, and Rise

Age Variation of Earth's Crust

Earth's crust varies greatly in from one region to another with continents being much older than ocean seafloor.
✓ Continental crust age ranges from Archean to Cenozoic
✓ Oceanic crust age ranges from Mesozoic to Cenozoic

Seafloor Mapping Methods

Multiple methods to map the sea bottom and shorelines: Sea bottoms are mapped by echo-sounding, radar, camara and seismic reflection Shorelines are mapped by beach profiling and LIDAR

Four Principal Methods of Mapping the Ocean Bottom

1. Ship-based Sonar

2. Satellite-based Radar

4. Submersible Survey

Various Methods for Sounding the Sea Bottom

These methods determine the water depth to the sea bottom, which then can be used to determine sea bottom topography.

Means of Mapping of the Sea Floor Sonar or Echo-Sounding

SIDESCAN SONAR SURVEY (Areal Coverage)

The sea floor is remotely mapped by means of sidescan sonar.

50 m depth

The intensity of sound received by the sidescan sonar tow vehicle from the sea floor provides information as to the general distribution and characteristics of the surficial sediment. In this schematic, strong reflections from boulders, gravel and vertical features facing the sonar transducers are white; weak reflections from finer sediments or shadows behind positive topographic features are black. The sea floor is typically surveyed in swaths 100-500 meters wide; the swaths are mosaicked together to form a composite image of the survey area.

Means of Mapping the Ocean Bottom Satellite Radar

Use of space-based radar to reflect off ocean surface, giving a very precise sea surface profile; sea surface profile anomalies closely mimic the underlying seafloor profile

Means of Mapping the Ocean Bottom **Seismic Reflection** NF SW 1700 19000 1600 s n usuf Ridge Eastern Alboran Basin Yusuf Basin <u>(</u>2 Site 977 5 km 3. Receiver 1. Explosion (s Site 977 5 km Copyright © 2005 Pearson Prentice Hall, Inc. Ocean floor Soft sediment Firm sediment Rock layer A Rock layer A-Rock layer B Rock layer B Rock layer C 2: Reflection

Use of underwater explosions to penetrate seafloor with seismic waves that reflect off seafloor and subsurface strata and faults, providing a subsurface image

Means of Sampling the Seafloor Deep Sea Drilling

Use of underwater drilling to penetrate seafloor and recover core samples of seafloor down to depths of over 3000 meters

Means of Sampling the Seafloor Deep Sea Coring

Use of piston coring devices to penetrate seafloor and recover sea bottom core samples of seafloor

Means of Sampling the Seafloor Bottom Dredge and Clam Grab

Use of box/net-dragging and clam-shell-like scooping devices to recover samples of off surface of seafloor

Two Primary Types of Earth Crust

Earth's Continents and Seafloors Gabbro Granite

Two Different Types of Crust

- Continental Granitic rock
- Oceanic Basaltic rock

Continental Crust

- Lighter (2.7 g/ml)
 - Thicker (30 km)
- ✓ High Standing (1 km elev.)
 - New crust by subductiongenerated magmas

Oceanic Crust

- Denser (2.9 g/ml)
- ✓ Thinner (7 km)
- ✓ Low Standing (- 4 km elev.)
- New crust by seafloor spreading-generated magmas

Oceanic

Continental

Cross Section: Oceanic Crust

1) Oceanic crust is made up of mafic-rich layers of rock having minerals of olivine, pyroxene, amphibole, calcium plagioclase and magnetite.

2) New oceanic crust forms at midocean ridges by seafloor spreading

3) Ocean crust obducted onto continental edges called "Ophiolite" complexes

4) Worldwide, vertical sampling of the oceanic crust has revealed a rather simple layer cake-like structure and composition

Cross-Section Profile of an Ocean Basin

Passive continental margin

Convergent active continental margin

- Large-Scale Ocean Bottom Features
 - Continental shelf, slope, and rise
 - ✓ Abyssal plains and hills
 - ✓ Mid-ocean ridge and rift valley
 - ✓ Oceanic islands, seamounts, and guyots
 - ✓ Ocean trench

Most of these features are the result of tectonic processes that create and eventually destroy oceanic crust

Cross-Section of the North Atlantic Ocean Basin

The North Atlantic Ocean basin is very symmetrical in terms of its central mid-ocean ridge and fracture system, which is flanked on both sides by abyssal basin floors and rimmed by passive continental margins.

Earth Processes That Create Seafloor Features

Continental Margins

- 1) Features resulting from Continental Rifting
 Continental Shelf and Slope
 Deep-Sea Oceanic Basins
 - 1) Features generated by Seafloor Spreading Mid-Ocean Ridges and Fracture Systems Oceanic Islands, Seamounts and Plateaus 2) Features generated by Subduction Trenches and Island Arcs Forearc Islands 3) Features resulting from Sedimentary processes Abyssal Plains and Hills Continental Rises Submarine Canyons

AGE OF EARTH'S OCEAN BASINS

Age of Oceanic Lithosphere (m.y.)

Data source:

Muller, R.D., M. Sdrolias, C. Gaina, and W.R. Roest 2008. Age, spreading rates and spreading symmetry of the world's ocean crust, Geochem. Geophys. Geosyst., 9, Q04006, doi:10.1029/2007GC001743.

AGE PROFILE of the NORTH AMERICAN CONTINENT

The North American continent's oldest rocks form its central region termed craton or shield, with younger belts of rock wrapping the craton

Cratons are fragments of super ancient continental terranes that accreted together during Archean and Proterozoic times

The younger orogenic beltlike terranes (1 BY and younger) that wrap around the craton represent major episodes of subduction and continental collision

Tectonic Provinces of North America (Ages are in Billions of Years)

The other continents have similar age patterns and structural design

Continental Margins of the World

Submerged continental margins shown in pale orange color Submerged continental margins make up nearly 20% of Earth's solid surface Continental margins represent the rifted, foundered edges of a past supercontinent

Two Types of Continental Margins

- **Passive** = Tectonically Active
- Active = Tectonically Inactive

Two Types of Continental Margins Passive = Tectonically Inactive = Atlantic Type Active = Tectonically Active = Pacific Type

Passive Margins Broad shelves

- Subdued coastline
- Little to no tectonic activity
- No Plate Boundary

Active Margins

- Narrow shelves
- Rugged coastline
- Tectonically active
- Plate Boundary

Active versus Passive Margins

50°W

Excellent Example: South America

Passive and Active Continental Margins

Active = West Coast Passive = East Coast

70°W

Walter H. F. Smith and David T. Sandwell, Seafloor Topography Version 4.0, SIO, Septem

60°W

90°W

GMT Oct 22 13:54

80°W

Global Distribution of Active and Passive Margins

Most active margins are found around the Pacific Basin Most passive margins are found around the Arctic, Atlantic and Indian Ocean Basins

Continental Margin Features

Major Features

- Continental Shelf
- Continental Slope
- Slope Break
- Continental Rise
- Submarine Canyons
- Deep-sea Fans

Continental Slope and Rise Sediments Key Points

Thickest ocean sediment piles
 ✓ Up to 20 km thick!

• Thickest sections found at base of submarine canyons in the form of fan-shape sediment wedges

- Mainly consists of sand, silt and clay within "graded" bedding layers
- Continentally derived, but classified as transitional-deep sediment
- Primarily transported and deposited by turbidity current processes
- Turbidity currents are dense mixtures of sediment and seawater that flow down slopes of seafloor
- Associated with submarine canyons

TURBIDITY CURRENT PROCESSESES

Lab Simulation of Turbidity Currents and Deposition of Graded Bedding

urbidity currents erode submarine canyons and deposit sediments as deep-sea fans

Turbidity Current Processes at Continental Margins

© 2010 W. H. Freeman and Company

 Canyon
 Shelf break

 heads
 Shelf

 Shelf
 Deep

 Sage
 Sage

 Continental
 Sage

 Sage
 Sage

Turbidity currents cut/erode downward in submarine canyons and deposit sediments as thick sequences of graded beds (turbidites) that form the deep-sea sediment fans on the continental rise Turbidity currents are responsible for the formation of submarine canyons on the continental shelves and slopes and the deep-sea sediment fans on the continental rises

Example of Submarine Cayons on a Continental Margin

Example: Set of Submarine Canyons on the Slope-Rise Region Outboard of the Great Barrier Reef – Eastern Australia

Earth's Deep-Sea Basin Features

- Mid-Oceanic Ridge, Rises and Transform Fracture Systems
- Abyssal Hills and Plains
- Seamounts and Guyots
- Oceanic Islands and Plateaus
 Trenches and Island Arcs

Profile: North Atlantic Ocean Basin

Ocean Ridges and Rises

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mid-Ocean Ridge, Rises & Fracture Systems

Key Points

Mid-ocean ridge systems represent the most extensive chain of active mountains on Earth

Active faulting and volcanism

Sea bottom is covered by rugged bedrock of young pillow basalt

- Little to no pelagic sediment
- Site of active hydrothermal vents

Mid-Ocean Ridge and Fracture Systems

 Knipovich Ridge

 White actinariid sea anemone (class Anthozoa)

 Capitellid worms sticking up all over (Polychaeta)

Key Points

Mid-ocean ridge systems represent the most extensive chain of active mountains on Earth

Active faulting and volcanism

Sea bottom is covered by rugged bedrock of young pillow basalt

Little to no pelagic sediment

Site of active hydrothermal vents

Mid-Ocean Ridge Hydrothermal Vents

Seamounts, Islands, and Tablemounts

Excessive basaltic volcanism at spreading centers create seamounts and islands along mid-ocean ridge.

Over time, seamounts and islands move off the elevated ridges and into deeper and deeper water as oceanic crust becomes older, cooler, denser

Eroded flat-topped islands eventually sink below sea level to become tablemounts or guyots. Tops of guyots deeper with distance from ridge

Seamounts, and guyots eventually become buried beneath thickening pelagic sediment pile to become part of the abyssal plains and hills

Abyssal Plains and Hills

Key Points

Thick pelagic sediment covers a rugged subsurface bedrock of basalt

Abyssal plains are the flattest, most featureless provinces on Earth

Abyssal hills are tops of seamounts sticking out

Abyssal plains and hills cover the most extensive tracts of ocean seafloor

Subsurface imaging of abyssal plains and hills from seismic reflection studies and deep sea drilling

Abyssal Plains and Hills

Key Points

Abyssal sediments are predominately clays and oozes

Soft pelagic sediment is loaded with benthic organisms

Benthic organisms crawl over and and burrow through the sediment = Bioturbation

PLATE TECTONICS and the SEAFLOOR

- Seafloor Spreading
- Subduction
- Transform Faulting
- Continental Rifting and Collision
- Hot Spots

Seafloor Ridge and Trench Map

Earth Processes That Create Seafloor Features

Continental Margins

- 1) Features resulting from Continental Rifting
 Continental Shelf and Slope
 Deep-Sea Oceanic Basins
 - 1) Features generated by Seafloor Spreading Mid-Ocean Ridges and Fracture Systems Oceanic Islands, Seamounts and Plateaus 2) Features generated by Subduction Trenches and Island Arcs Forearc Islands 3) Features resulting from Sedimentary processes Abyssal Plains and Hills Continental Rises Submarine Canyons

OCEAN BASINS and CONTINENTAL PLATFORMS Summary of Concepts I. Earth's rocky surface covered by of two types of crust Dense, thin, low-standing oceanic crust Light, thick, high-standing continental crust II. Seafloor is divided into two topographic regions Shallow continental margins **Deep-sea oceanic basins** III. Continental margins and Deep Ocean basins are fundamentally different Composition, Structure, Age, and Tectonic origin IV. Shallow ocean basin edges have a wide variety of topographic features Shelf, Slope, Rise, Submarine canyons Floored by continental Crust Formed by continental rifting V. Deep ocean basins are rugged and have a wide variety of topographic features Mid-oceanic ridges and Transform fracture systems **Abyssal Hills and Plains**

- Oceanic islands, Seamounts, and Guyots
 - Trenches and Island Arcs

OCEAN BASINS and SEAFLOORS Discussion

Ocean Basins are Vast Sinks for Sediment

Next Lecture: Seafloor Sediments

Shallow Underwater Carbonate Sand Dunes - Bahamas