
Metamorphic Rock Origin, Processes and Identification

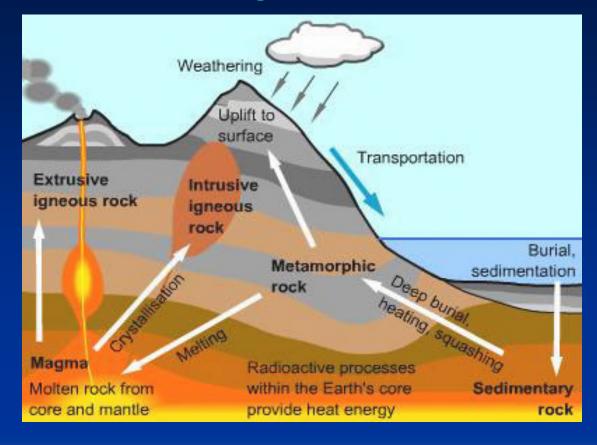
Generalized Metamorphic Facies Boundaries (after Yardley, 1988)

Physical Geology GEOL 100 Lecture Ray Rector - Instructor

http://www.rockhounds.com/rockshop/rockkey/index.html

http://earthsci.org/education/teacher/basicgeol/meta/meta.html

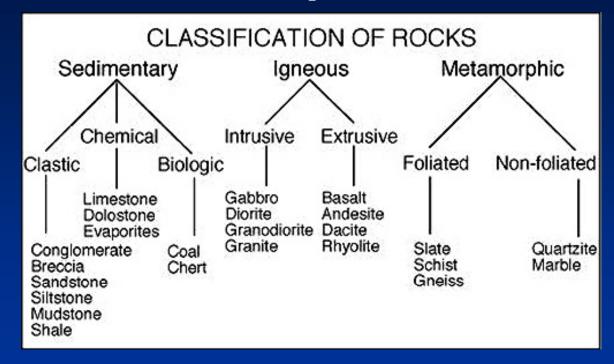
http://csmres.jmu.edu/geollab/Fichter/MetaRx/Metaalphab.html


Major Concepts

- 1) Metamorphic rocks form by recrystallization and/or neocrystallization of preexisting rock (parent rock) in the solid state.
- 2) Most cases of metamorphism occur at or near tectonic plate boundaries.
- 3) Agents of metamorphism include heat, pressure, reactive fluids, and stress.
- 4) Two metamorphic processes are recrystallization and neocystallization.
- 5) Three major types of metamorphism is regional, contact and dynamic.
- 6) The two primary criteria for classifying and identifying metamorphic rocks are composition (mineralogy) and texture (grain size and grain orientation).
- 7) Two major metamorphic rock groups are 1) foliated and 2) nonfoliated.
- 8) Metamorphic rock composition controlled by parent rock composition.
- 9) Texture controlled by combination of metamorphic agents (foliated includes. stress; nonfoliated no stress involved).
- 10) Slate, phyllite, schist and gneiss are the foliated metamorphic rocks.
- 11) Marble, quartzite, hornfels, and granofels are the nonfoliated meta rocks.

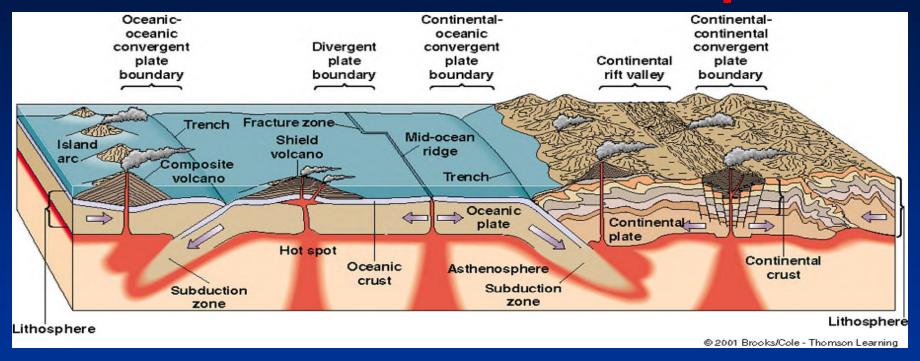
The Rock Cycle

Three Primary Rock Types


- 1) Igneous
- 2) Metamorphic
- 3) Sedimentary

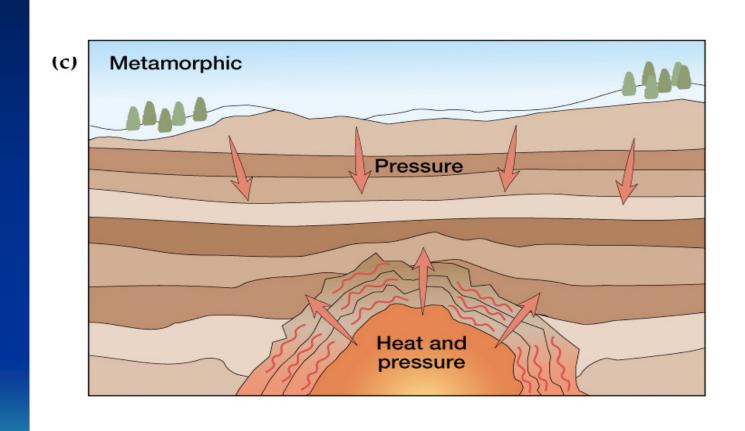
Metamorphic rocks form by changing the texture and/or mineralogy of a parent/source rock into another rock in the solid-state under elevated temperatures, pressure, stress and/or fluids activity

Classification of Metamorphic Rocks


- 1) Igneous
- 2) Metamorphic
- 3) Sedimentary

Like the other rock types, metamorphic rocks are classified based on both Texture and Composition

The primary division on metamorphic rock classification is whether a metamorphic rock is foliated (layered) or nonfoliated

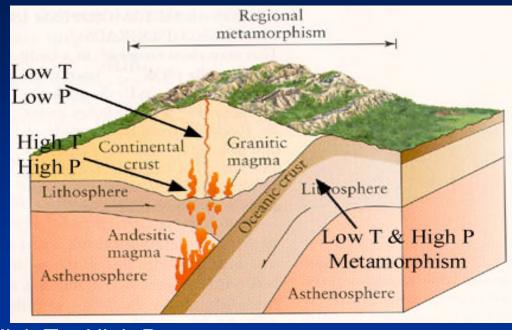

Environments for Metamorphism

Vast majority of metamorphism takes place at plate boundaries – Why?

- 1) Regions of elevated heat energy (deep crustal burial, hot magmas/fluids)
- 2) Regions of elevated lithostatic **pressure** (crustal burial & thickening)
- 3) Regions of magma production with associated chemically-reactive fluids
- 4) Regions of great tectonic stresses (tectonic plate interactions)

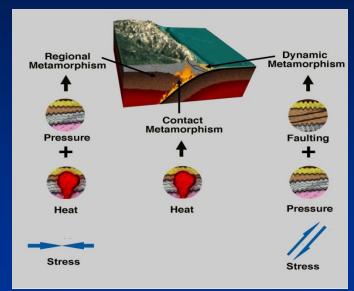
Four General Types of Metamorphism Agents of Change

Hot Chemically-Reactive Fluids and Tectonic Stresses Tool


Tectonic Settings and Types of Metamorphism

Tectonic Settings of Metamorphism

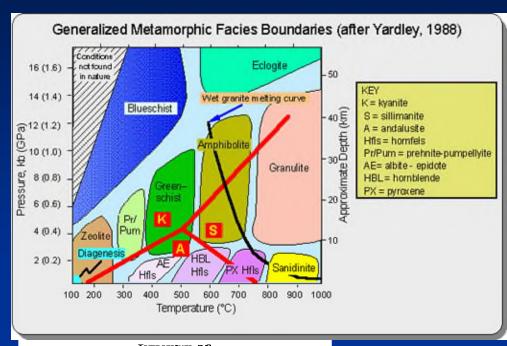
- 1) All types of plate boundaries
- 2) Hot spots
- Any other region undergoing mountain building and/or magmatic activity

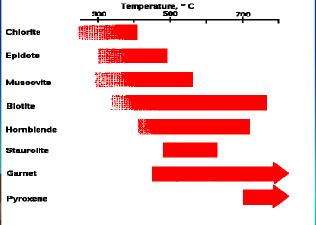

Types of Metamorphism

- 1) Regional Metamorphism (RM)
 - ✓ Due to deep burial
 - ✓ From Low T + Low P to High T + High P
- 2) Contact Metamorphism (CM)
 - ✓ Caused by close proximity to magma and/or very hot fluids
 - ✓ From High T + Low P to High T + High P
- 3) Dynamic Metamorphism (DM)
 - Caused by shearing forces in active fault zones
 - ✓ From Low T + Low P to Mod T + Mod P

Metamorphic Processes and Grade

- 1) Deep Burial = Pressure + Heat + Tectonic Stresses
 - ✓ Process termed Regional Metamorphism
 - ✓ Metamorphic conditions = Low to High grade
 - ✓ Produces foliated textures
 - ✓ Slates, schist, and gneisses
- 2) Magma Contact = High Heat + Fluids
 - ✓ Process termed Contact Metamorphism
 - ✓ Metamorphic conditions = Low to High grade
 - ✓ Produces non-foliated textures
 - ✓ Quartzite, Marble, and Hornfels





Metamorphic Grade and Mineral Facies Temperature-Pressure Chart

The Facies Concept

- The presence of a Key Mineral in a metamorphic rock indicates a unique set of Temperature-Pressure conditions
- A specific range of temperaturepressure values constitutes a given Metamorphic Facies
- 3) Each Metamorphic Facies is associated with a unique tectonic setting
- 4) Low-grade metamorphism occurs at low temperatures and pressures
- 5) High-grade metamorphism occurs at high temperatures and pressures

Metamorphic Rock Classification									
Original Rock	Texture	Rock Name	Metamorphic Process	Metamorphic Grade	Comments				
mudstone mudstone mudstone mudstone granite	Foliated Foliated Foliated Foliated	slate phyllite schist gneiss	regional regional regional regional	moa-nign	breaks into plates (slaty cleavage) more shiny and crenulated than slate different schists recognized on the basis of mineral content well-developed light and dark banding				
quartz sandstone limestone basalt	Non-foliated Non-foliated Non-foliated	quartzite marble metabasalt	contact contact contact	low-high low-high low	sugary texture composed of interlocking quartz grains; relatively hard; won't fizz with acid sugary texture composed of interlocking calcite grains; relatively soft; may fizz with acid greenish color due to chlorite				

Metamorphic rocks are classified according to several criteria:

- 1) Origin = parent rock
- 2) Texture-Fabric
- 3) Composition-Mineralogy
- 4) Metamorphic process
- 5) Grade of metamorphism

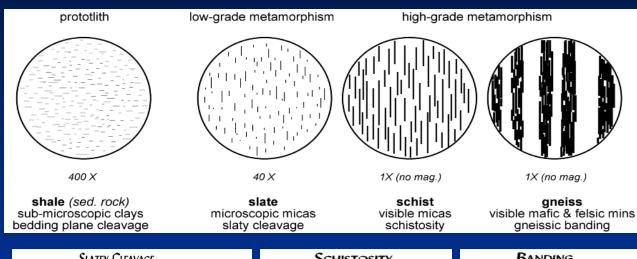
Parent Rock → Metamorphic Rock Pairs

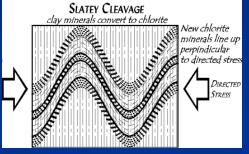
Parent	Grd	Rock	Foliation	Comments		
	Low	Slate	cleavage	∨ fine		
Shale	J	Phyllite	cleavage	'sheen' from fine mica		
		Schist	schistocity	mica coarse/visible		
	Hi	Gneiss	banding	v coarse		
	Med	Green schist	schistocity	green chlorite		
Basalt	1	Ampholite	Banding	black amphibole		
	Hi	Blue- schist	schistocity	blue amphibole		
Lime- stone	All	Marble	None/ Banding	Calcite dominates minors give color		
Sand- stone	All	Quartzite	None	Quartz dominates minors give color		

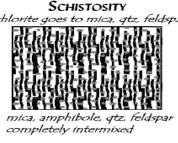
Metamorphic Rock Classification

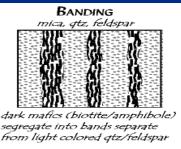
T		Rock	Metamorphism		Daminant mines				-1			Original rock	
Te	Texture		name	dominant kind		Dominant mineral composition							
Nonfoliated Foliated	fine grained	smooth" frochured	Slate	regional	low grade	clay	orite					Sia.	shale
		shiney	Phyllite	regional	medium grade		-	0 3	2				shale
	codrse	"layered"	Schist	regional			1	-	0	ole	1		shale
		"benned"	Gneiss	regional	high grade				2	amphibole	dspor		shale or granite
	fine grained		Hornfels	contact				T		1	fel		shale
		with HCI	Quartzite	contact or regional									quartz sandston
	graine	reaction with HCI	Marble	contact or regional					1			calcite	limeston or dolomit

Common Metamorphic Rocks In Hand Samples






Foliated Metamorphic Textures



Foliated Textures

- 1) Foliated textures result from deviatoric tectonic stresses
- 2) The type of foliated rock fabric is a function of metamorphic grade
 - ✓ Foliation character changes with intensity and duration of metamorphism
- 3) The type of foliated rock fabric is also a function of rock composition

Foliated Metamorphic Textures

Slaty

- √ Foliated = Flat, tight-layered sheets
- √ Very Fine Grained
- ✓ Little to minerals observable

Phyllitic

- ✓ Foliated = Mildly wavy, sheets
- √ Fine-grained
- ✓ Sheen-like luster = mica minerals

Schistose

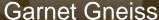
- √ Foliated = wavy, flaky layers
- ✓ Medium to course grained
- √ Observable mineralogy
- ✓ Lots of mica and quartz

Gneissic

- ✓ Foliated = dark and light mineral bands
- ✓ Medium to course grained
- √ Observable mineralogy
- ✓ Quartz, feldspar, biotite, and amphibole

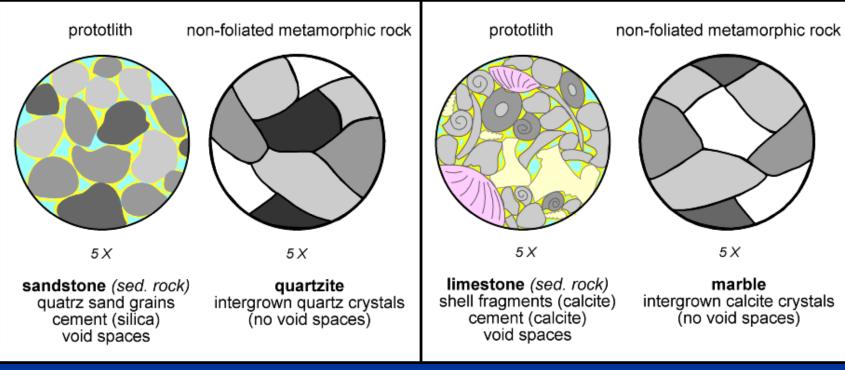
Red Slate

Close-Up



Mica Schist

Close-Up



Close-Up

Metamorphism of Parent Rocks

Textural Changes in Mono-Minerallic Metamorphism

Quartz-rich Rocks

Calcite-rich Rocks

- ✓ Mono-minerallic rocks are typically non-foliated.
- ✓ Texture described as "polygonal granular"

Non-Foliated Metamorphic Textures

Microgranular

- ✓ Crystalline
- ✓ Nonfoliated = Equant-shaped grains
- ✓ Very fine- to fine-grained
- ✓ Massive-looking rock
- ✓ Little to no minerals observable
- √ Example = Hornfels

Macrogranular

- ✓ Crystalline
- ✓ Nonfoliated = Equant-shaped grains
- ✓ Medium to coarse-grained
- ✓ Massive-looking rock
- ✓ Identifiable minerals
- ✓ Example: Marble

Hornfels

Granular Fabric

Marble

Most Common Types of Metamorphic Rocks

Questions:

- 1) Which are foliated?
- 2) Which are nonfoliated?
- 3) Which are monomineralic?
- 4) Which are high grade?
- 5) Which are low grade?
- 6) Which looks mica-rich?
- 7) Which are hard?
- 8) Which are soft?

Common Metamorphic Rocks In Hand Samples

Common Metamorphic Rocks Under a Microscope

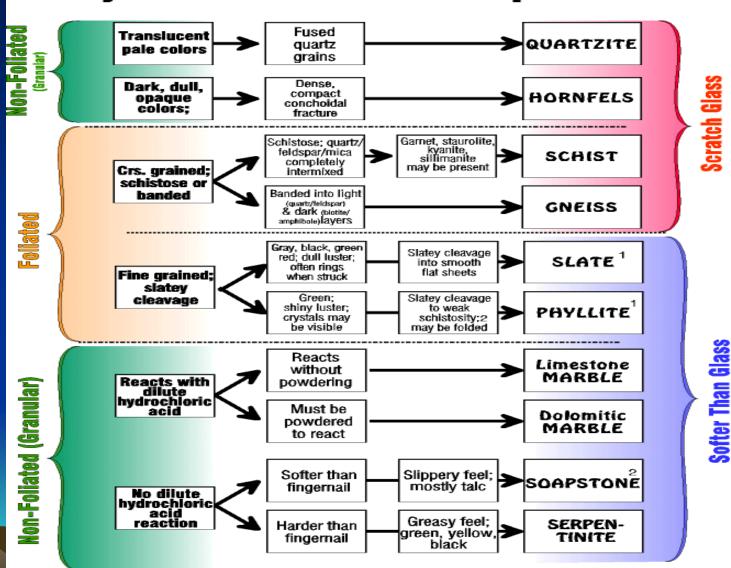
Metamorphic Rock Classification

A Three Step Process

1) Determine Texture

- ✓ Foliated or Nonfoliated?
- ✓ Type of foliation?
- ✓ Grain size?

	Scheme for Metamorphic Rock Identification										
TE	XTURE	GRAIN SIZE	COMPOSITION	TYPE OF METAMORPHISM	COMMENTS	ROCK NAME	MAP SYMBOL				
٥	L	Fine		Regional	Low-grade metamorphism of shale	Slate					
FOLIATED	MINERAL ALIGNMENT	Fine to		(Heat and pressure increase	Foliation surfaces shiny from microscopic mica crystals	Phyllite	* * * * * * * * * * * * * * * * *				
14 1	N AL	medium	MICA QUARTZ FELDSPAR AMPHIBOLE GARNET	with depth)	Platy mica crystals visible from metamorphism of clay or feldspars	Schist					
ngo ang ang ang ang ang ang ang	BAND- ING	Medium to coarse	QUA FELDS AMPHI GARN		High-grade metamorphism; some mica changed to feldspar; segregated by mineral type into bands	Gneiss					
		Fine	Variable	Contact (Heat)	Various rocks changed by heat from nearby magma/lava	Hornfels	= 1				
	-IATED	Fine	Quartz		Metamorphism of quartz sandstone	Quartzite					
NONFOLIATED	NONFOL	to coarse	Calcite and/or dolomite	Regional or Contact	Metamorphism of limestone or dolostone	Marble					
		Coarse	Various minerals in particles and matrix		Pebbles may be distorted or stretched	Metaconglomerate					


2) Determine Composition

✓ Mineralogy?

3) Name the Meta Rock and its Parent Rock

Classification of Metamorphic Rocks

Key to Common Metamorphic Rocks

^{1 (}Shale), slate, and phyllite complete intergrade with each other. Distinctions may be difficult.

² Soapstone may be weakly foliated.

Metamorphic Rocks Discussion and Examination

