Mineral Properties and Classification

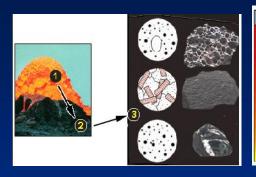
Physical Geology – GEOL 100 Ray Rector - Instructor

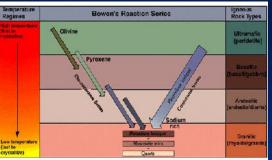
http://www.rockhounds.com/rockshop/mineral_id/index.html

MINERAL INQUIRY I. What are Minerals? \checkmark How do minerals form? \checkmark Where are minerals found? \checkmark What types of minerals are there? \checkmark The common rock-forming minerals? II. Classification of Minerals – Mineral Groups **III.** The Physical Properties of Minerals \checkmark The most important properties? ✓ How do you determine these properties? IV. Determining the Identify of a Mineral

What are Minerals?

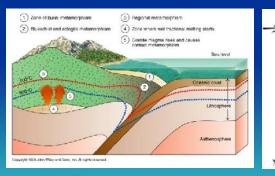
Definition: any *naturally-occurring*, homogeneous solid that has a distinctive internal *crystalline* structure, a *definite chemical composition* and a set of *unique physical properties*. Minerals are usually *formed by inorganic processes*.

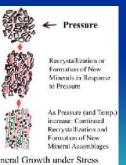

What Makes Each Mineral Unique?

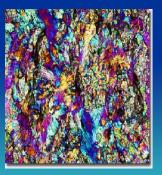

A mineral's crystal structure and chemical composition together determine the mineral's unique physical properties

How do Minerals Form?

1)Crystallization from a cooling magma or lava




2) Crystallization from aqueous solutions



3) Crystallization from preexisting minerals

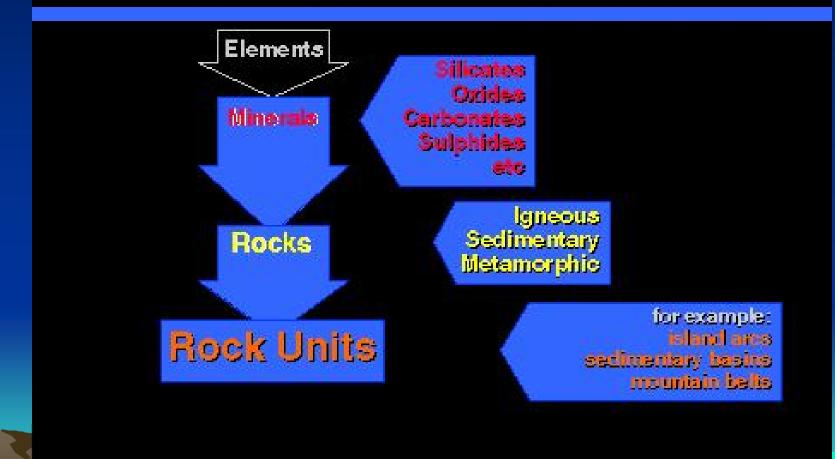
Where are Minerals Found? Short Answer = Everywhere! 1) Igneous Rocks

- 2) Sedimentary Rocks
- 3) Metamorphic Rocks
- 4) Sediment

Various Types of Minerals

- ✓ Over 4000 Species
- ✓ Grouped into Categories

 ✓ Silicate group is by far the largest and most important mineral group


 ✓ Only about 20 minerals make up 95%+ of all rocks

 ✓ Minerals are identified by their Chemical and Physical Properties

Common Rock-Forming Minerals

Earth Materials

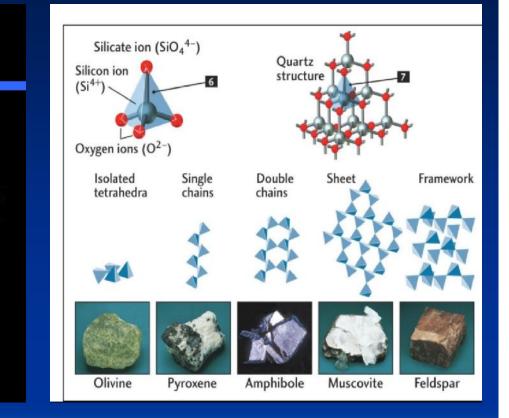
Mineral/Formula		Cleavage	Silicate Structure	Example
	Olivine group (Mg, Fe) ₂ SiO ₄	None	Independent tetrahedron	Olivine
Pyroxene group Two (Augite) Two (Mg,Fe)SiO ₃ rigt		Two planes at right angles	Single chains	Augite
Amphibole group (Hornblende) Ca ₂ (Fe,Mg) ₅ Si ₆ O ₂₂ (OH) ₂		Two planes at 60° and 120°	Double chains	Hornblend
Micas	Biotite K(Mg,Fe) ₃ AlSi ₃ O ₁₀ (OH) ₂	One plane	Sheets	Biotite
	Muscovite KAI ₂ (AISi ₃ O ₁₀)(OH) ₂			Muscovite
Feldspars	Potassium feldspar (Orthoclase) KAISi ₃ O ₈	Two planes at	Three-dimensional networks	Potassium feldspar
	Plagioclase feldspar (Ca,Na)AlSi ₃ O ₈	90°		
Quartz SiO ₂		None		Quartz

Common Rock-Forming Minerals

Rock-Forming Minerals

Although there are

very many rock

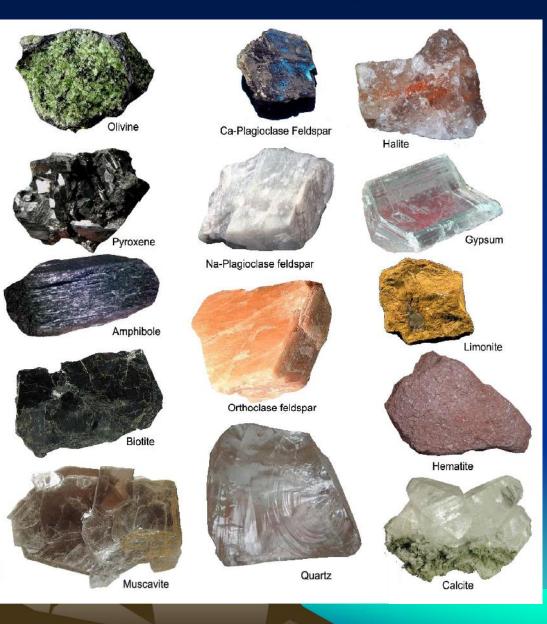

types, they are mainly

built from one or more

of 11 rock-forming

minerals. Others are uncommon to rare.

- 🔶 Clay
- 🔶 Quartz
- Calcite
- Olivine
- Dolomite
- Pyroxene
- Amphibole
- Biotite, Muscovite Micas
- Orthoclase, Plagioclase Feldspars



Most-Common Rock-Forming Minerals

2) Na- Plagioclase

1) Quartz

- 3) Ca- Plagioclase
- 4) K-Feldspar
- 5) Hornblende (amphibole)
- 6) Augite (pyroxene)
- 7) Olivine
- 8) Tourmaline
- 9) Garnet
- 10) Biotite
- 11) Muscovite
- 12) Chlorite
- 13) Kaolin (type of clay)
- 14) Calcite
- **15) Dolomite**
- 16) Gypsum
- 17) Halite
- 18) Magnetite
- 19) Hematite
- 20) Limonite
- 21) Pyrite

Important Mineral ID Properties

- 1) Crystal Form & Habit
- 2) Luster
- 3) Color
- 4) Hardness
- 5) Cleavage
- 6) Other properties
 - Streak
 - Reaction to acid
 - Magnetic
 - Taste

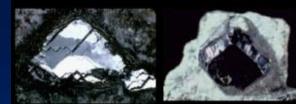
Mineral Habit

Defined: Characteristic external habit or shape of an individual crystal or groups of crystals

Crystal habit is divided into several categories, based on:

- Internal crystal structure
- External crystal shape

Crystal habit is useful for mineral ID, but can be confused with cleavage faces.


Mineral Luster

Defined: The quality of reflected light emitted by a mineral crystal

Luster can divided into two useful categories:

Metallic and Nonmetallic Nonmetallic lusters can be further subdivided into:

Glassy, Pearly, Waxy, and Dull Luster is useful for mineral ID

Metallic Luster

Nonmetallic Luster

Mineral Streak

Defined: The color of the crushed powder of a mineral left on a porcelain plate

 Only for determining the metallic minerals

 ✓ Only works is mineral has lower hardness than the streak plate

Mineral Color

Defined: The hue and shade of the reflected light emitted by a mineral crystal

Mineral color can divided into two useful shade categories:

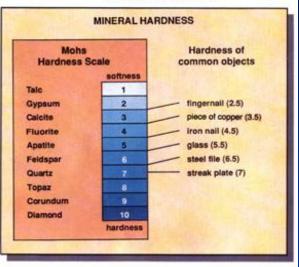
Dark-colored and Light-colored

Color can also divided into the hue categories:

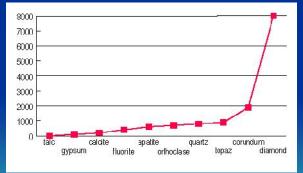
White, Gray, Black, Red, Orange, Yellow, Green, Blue, Purple, etc.

≻Color is useful for mineral ID

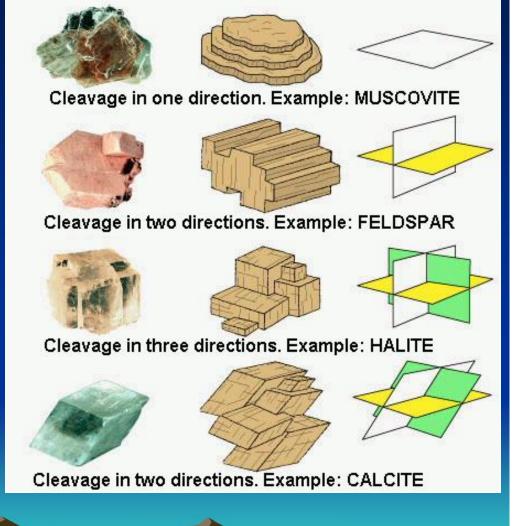
http://cmsc.minotstateu.edu/Labs/web%20minerals/minerals%20lab.html


Mineral Hardness

- ✓ Mohs Hardness Scale
- ✓ Identify Mineral by Testing for Hardness
- ✓ Doing the Scratch Test
- ✓ Other Testing Objects



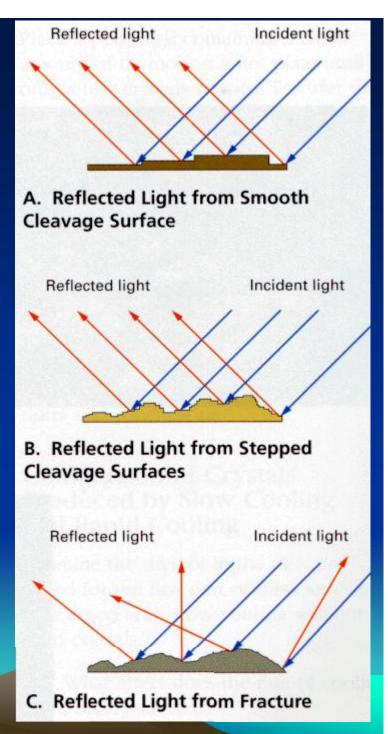
MOHS SCALE


Mineral Cleavage

Defined: Geometric planes of inherent weakness through a mineral crystal

✓ Each mineral has a unique identifying cleavage property

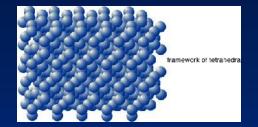
 ✓ A mineral has either none, one, two, four, or six sets of cleavage


 ✓ Cleavage is observed as shiny parallel planes on the surfaces of a mineral crystal

Mineral Cleavage Quality

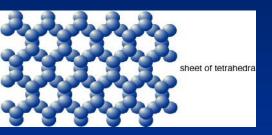
Cleavage is observed as shiny parallel planes on the surfaces of a mineral crystal

- Quality: Variation in degree of smoothness of cleavage surface.
- Each mineral has a unique cleavage quality
- A mineral has either excellent/ perfect, good, poor, or none

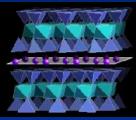


Determining Mineral Cleavage

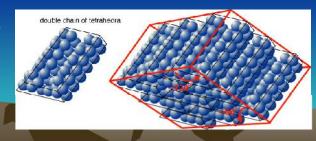
No Cleavage


Example = Quartz One Set of Cleavage

Example = Muscovite



single chain of tetrahedra

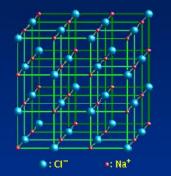


Two Sets of Cleavage

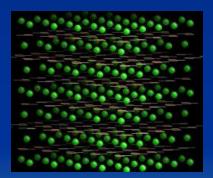
- ✓ 90 degrees
- ✓ Example = Augite

Two Sets of Cleavage

- ✓ 120 & 60 degrees
- ✓ Example =
 Hornblende



Determining Mineral Cleavage


Three Sets of Cleavage

✓ 90 degrees✓ Example = Halite

Three Sets of Cleavage ✓ 120 & 60 degrees ✓ Example = Calcite

Reaction to Acid – The "Acid" Test

Defined: Some minerals react to acid solution (HCI) they start to bubble and dissolve

✓ Good for determining the
 Carbonate minerals

 ✓ Use the acid test only if you think that your unknown mineral has low hardness – close to 3.

 ✓ Typically either calcite or dolomite

http://academic.brooklyn.cuny.edu/geology/grocha/mineral/mineral.html

Magnetism – The "Magnet" Test

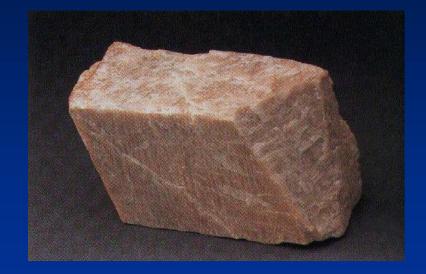
Defined: Some minerals are magnetic – some weakly, some strongly. A magnet will stick to a magnetic mineral.

✓ Good for determining the certain *magnetite and hematite*

✓ Need a hand-held magnet.

http://academic.brooklyn.cuny.edu/geology/grocha/mineral/mineral.html

Fluorescence– The "Black-light" Test



Defined: Some minerals fluoresce under ultraviolet light.

Good for determining the certain Ore and Gem minerals
 Need a hand-held black-light instrument.

http://academic.brooklyn.cuny.edu/geology/grocha/mineral/mineral.html

Distinguishing Between K-Feldspar and Plagioclase

Potassium Feldspar

- ✓ Orthoclase and Microcline
- Salmon pink- to white creamcolored
- ✓ Wavy "flame-like" streaks

Plagioclase Feldspar

- Albite, Oligoclase, Andesine, Labradorite, Bytownite, Anorthite
- ✓ White- to Dark grey-colored
 - Sets of thin, straight, groove-like striations on some cleavage faces

Mineral Identification Procedure

Step #1	Mineral Luster? – Metallic or Nonmetallic?		
	<u>Metallic</u>		Nonmetallic
Step #2	Mineral Hardness?	Step #2	Mineral Color? – Light or Dark
Step #3	Mineral Streak?	Step #3	Mineral Hardness?
Step #4	Other Properties?	Step #4	Mineral Cleavage?
Step #5	Mineral Name?	Step #5	Other Defining Properties?
		Step #6	Mineral Name?

Next Lecture Topic

Igneous Rocks

- Define
- Origin and Importance to Formation of Igneous Rocks
- Classification Igneous Rock Groups
- Physical Properties
- Identification of Hand Specimens

Preparation

- Read Mineral and Igneous Chapter in Textbook
- Study Lecture Notes and PowerPoint

Mineral Web References

Common Minerals in Igneous Rocks Mineral Hardness Testing Mineral Identification – Physical Properties MINERAL PROPERTIES, USES, & IDENTIFICATION Index of minerals in thin-section WHAT IS CRYSTAL CLEAVAGE? PHYSICAL CHARACTERISTICS OF MINERALS

http://www.cobweb.net/~bug2/mineral.htm

http://www.rockhounds.com/rockshop/mineral_id/index.html

http://www.union.edu/PUBLIC/GEODEPT/COURSES/geo-10/mineral.htm

http://academic.brooklyn.cuny.edu/geology/grocha/mineral/mineral.html

http://cmsc.minotstateu.edu/Labs/web%20minerals/minerals%20lab.htm