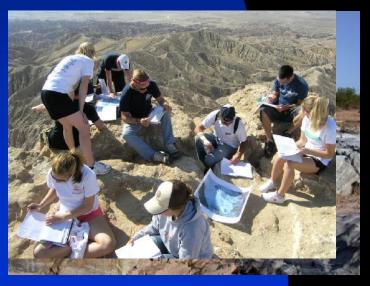

Physical Geology GEOL100

Instructor: Ray Rector

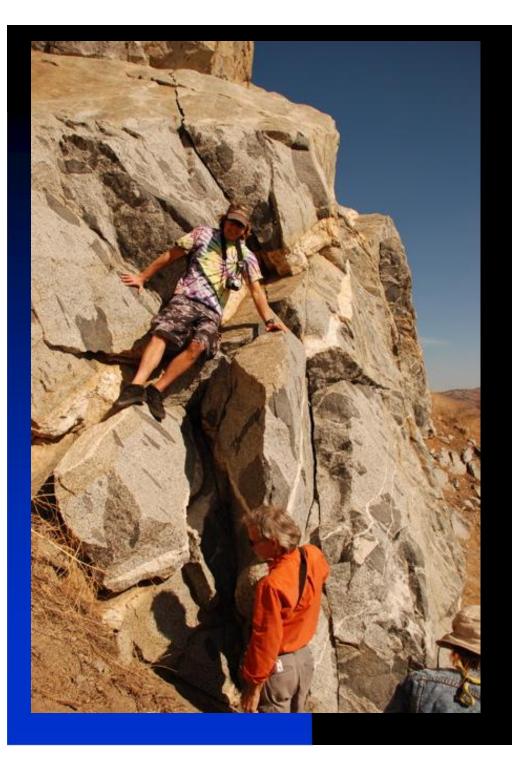
First Day Agenda


- Course Description
- Review of Course Syllabus
- Instructor Introduction
- Student Introductions
- Overview of Study of Geology
- Scientific Method

Course Description

- Online, self-study and discussion-based examination of geologic features and processes of the Earth's crust and mantle.
- Topics Include:
 - Scientific Method
 - Origins of Earth
 - ⋆ Plate Tectonics
 - Minerals
 - ★ Rocks
 - ⋆ Volcanism
 - Geologic Dating
 - ★ Earthquakes
 - Structural Geology and Mountain Building
 - Rivers and Groundwater
 - Deserts and Glaciation
 - Shoreline and Climate Change

Course Design


- Online-Based Format
- Course Activities Include:
 - ★ Reading assignments
 - ★ Online exercises
 - ★ Discussion forums
 - Video instruction
 - ★ Instructor PowerPoints
 - ★ Instructor lecture note series
 - Research writing assignments
 - Quizzes and Exams

Course Syllabus

- Basic Logistics
- Course Objectives
- Important Enrollment Dates
- Instructor's Attendance Policy
- Blackboard Classroom Do's and Don'ts
- Grading
- Assignments and Testing
- Extra Credit
- Classroom Website
- Schedule of Study

<u>www.geościrocks.com</u>

Miramar Online Lab Link

Professor Ray

- Instructor's Academic Background
- Instructor's Passion for Geology
- Instructor's Role in Classroom
- Instructor's Teaching Philosophy

Who am I?

EARTH SCIENCE EDUCATION

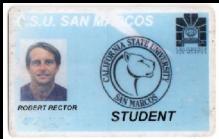
California Single Subject Teaching Credential – Geosciences - California State University, San Marcos, CA

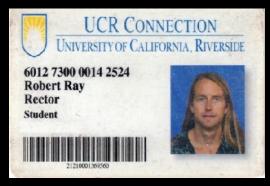
- ➤ 35 graduate-level semester units completed; GPA = 3.9
- Cross-Cultural Language and Academic Development
- > Additional emphasis of technology in the classroom

Earth Science Doctoral Program – Volcanism and TectonicsUniversity of California Riverside, Riverside, CA.

- ➤ 38 graduate-level semester units completed; GPA = 3.9
- Graduate Division Fellowship
- Mineralogical Society of America scholarship

Master of Science Degree – Igneous Petrology San Diego State University, San Diego, CA


- > 35 graduate-level semester units completed; GPA=3.9
- Achievement Rewards for College Scientists Scholarship


Bachelor of Science Degree - Magna Cum Laude - GeologySan Diego State University, San Diego, CA

- > 172 semester units completed; GPA = 3.8
- Outstanding Senior Research Award--College of Sciences
- Outstanding Research Award—Department Of Geology

Engineering Undergraduate ProgramCalifornia State University, Northridge, CA

Marine Engineering emphasis

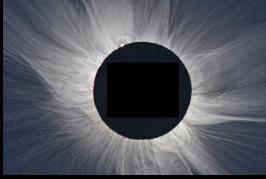
TEACHING EARTH SCIENCE

Cuyamaca College, El Cajon, CA ❖ Oceanography Lecture	2013 - Present
University of San Diego, San Diego, CA	2007 - Present
MiraCosta College, Oceanside, CA Coceanography Lecture and Laboratory Online Geology	2004 - Present
San Diego Miramar College, San Diego, CA ❖ Geology Laboratory ❖ Online Oceanography Lecture	2003 - Present
San Diego Mesa College, San Diego, CA ❖ Online Geology Lecture ❖ Geology Laboratory	2002 - Present
University of California Riverside, Riverside, CA ❖ General geology, Historical geology, Mineralogy, Optical mineralogy, Igneous petrology, and Metamorphic petrology	1994-1997
 San Diego State University, San Diego, CA ❖ General geology laboratory ❖ Advanced field geology course in Baja, Mexico. 	1991-1993

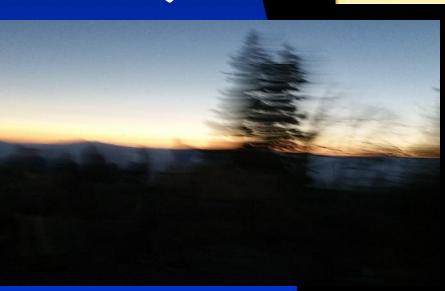
Professor's Interests

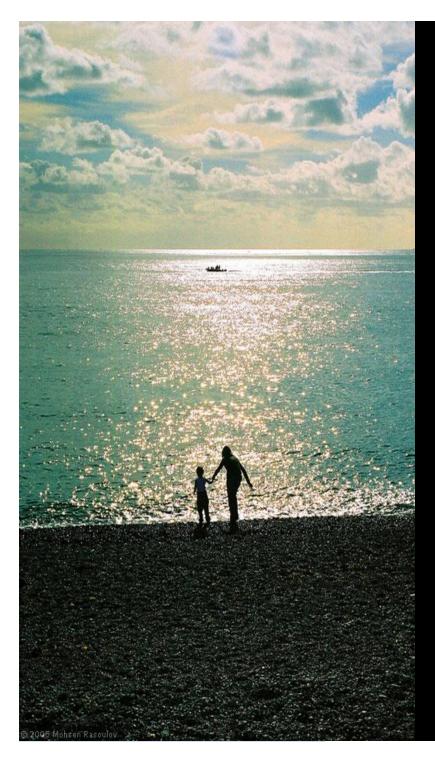
Travel to Cool Places, Adventure, Hanging Out, and Partying with Fun and Interesting Friends

Last Summer's Big Adventure – The Big Island

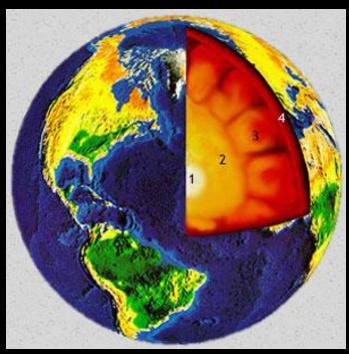


Last Summer's Adventure - Total Eclipse


Howely from



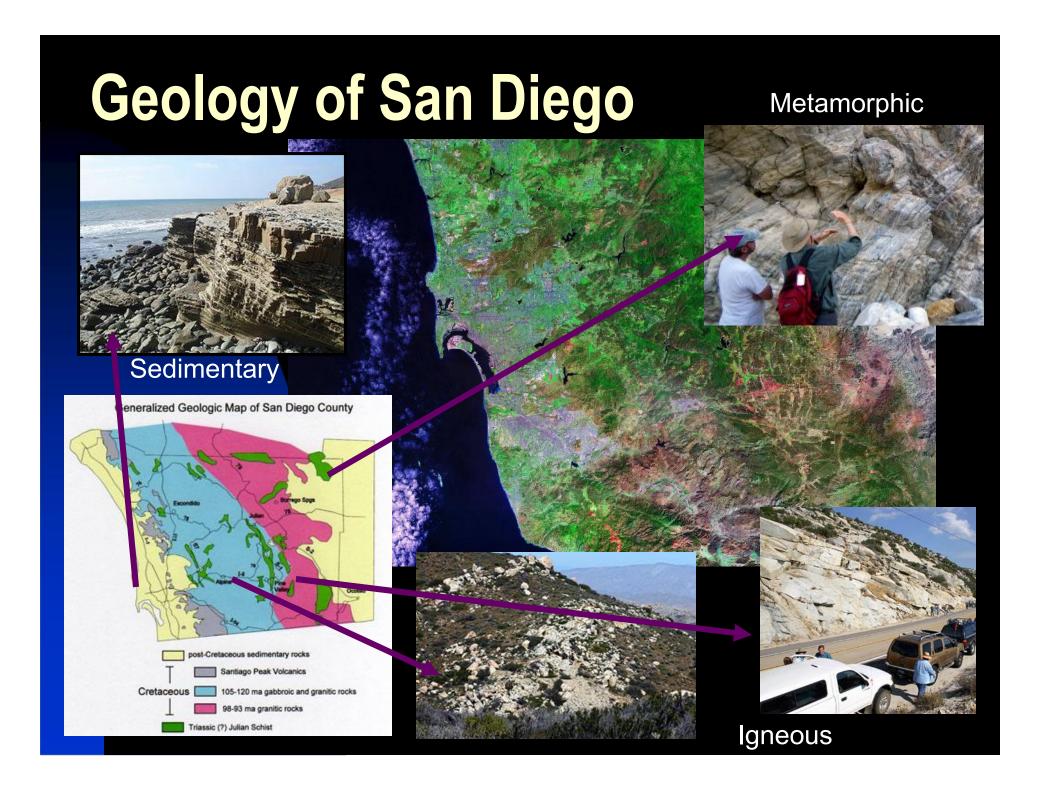
Who are You?


- Your Name
- Academic Focus
- Personal Interests
- Why take Geology Course?

Wishing Everyone a Great Fall Semester

Geology of Planet Earth

The Coastal Geology


Backcountry Geology

Desert Geology

Geology of San Diego County

Local Natural Hazards

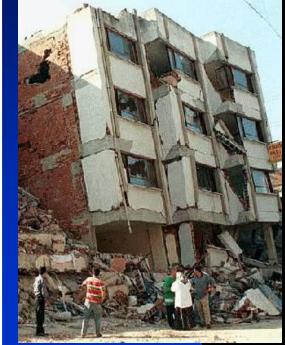
Question:

What other geologic hazards do we face in San Diego?

What is Geology?

✓ Geology is the scientific study of the Earth

✓ An interdisciplinary science



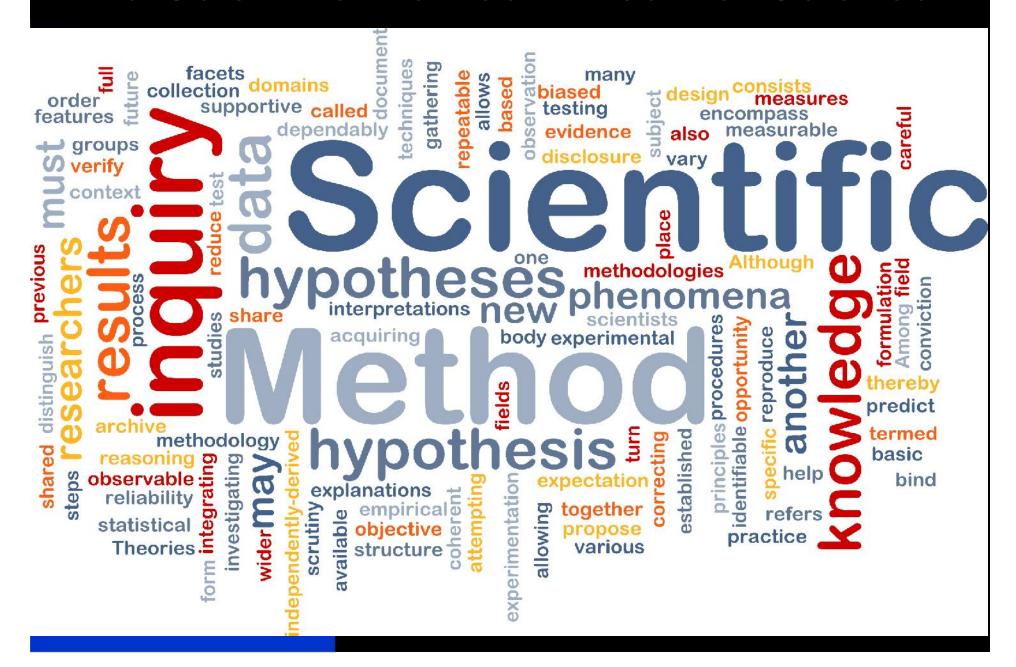
Volcanic Studies

Seismic Studies

GEOLOGY --- an Interdisciplinary Science Geology integrates many different types of geosciences

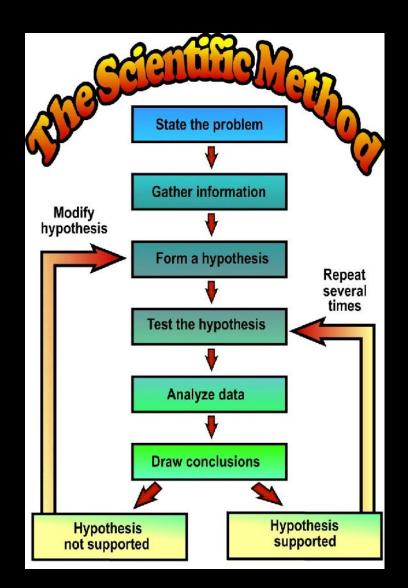
- Mineralogy and Petrology the study of minerals and rocks
- Marine geology the study of Earth's ocean bottom
- Geochemistry- study of chemical nature of rocks, minerals and fluids
- Hydrology study of rivers, groundwater, flooding, dams
- Volcanology study of the nature and distribution of volcanoes
- Engineering geology- design and construction of structures
- Structural geology form and development of geologic structures
- Geophysics study of forces and mechanisms of geologic phenomena
- Environmental geology study of geological resources and pollution
- Petroleum geology Locate. assess, and extract oil and natural gas

What Do Geologists Do?

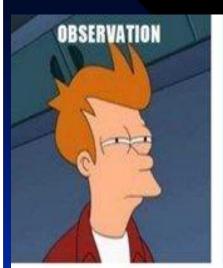

Answer: ...they do earth science.

Science defined: The investigation and acquisition of useful, reliable knowledge of earth's crust that is based on empirical observations (physical evidence).

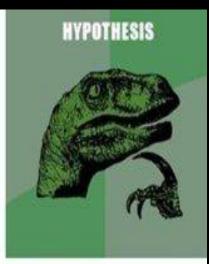
- ✓ Earth scientists use a powerful way of thinking, that is rational, logical, and organized, called *scientific thinking*.
- ✓ Intelligence, imagination, creativity, inspiration, and luck are other important attributes of scientific study.
- ✓ Earth scientists use a powerful approach to inquiry called the **scientific method**.
- ✓ Central to science is community and peer review.

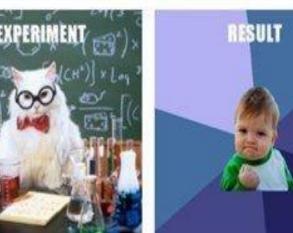

The Scientific Method – Heart of Science

THE SCIENTIFIC METHOD

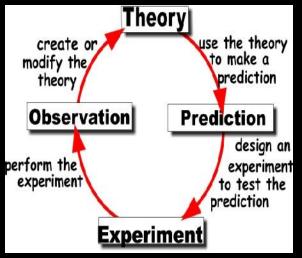

The Basic Components

- ✓ Empirical Observations
- ✓ Questions / Problems
- ✓ Hypotheses / Models
- ✓ Predictions
- √ Tests / Experiments
- ✓ Analysis of Results
- ✓ Draw Conclusions
- ✓ Reevaluate Hypothesis




Note: The scientific method is NOT a recipe – it's a process 23

Today's Ocean Lab: Investigation and Application of the Scientific Method


Rationalism (Logic & Reasoning)

Empiricism (Experience & Observation)

Science

Investigation and Application of the Scientific Method

Scientific Method

OBSERVATION

 \blacksquare H

HYPOTHESIS

"T

TEST

Biar	Cultur	Elements in Symptom	Class	Other Observations
0				
9				
4				
6				
7				
9				
10				

=A

ANALYZE DATA

CONCLUSION

Scientific Method is an Ongoing Process

Develop General Theories

General theories must be consistent with most or all available data and with other current theories.

Gather Data to Test Predictions

Relevant data can come from the literature, new observations, or formal experiments. Thorough testing requires replication to verify results.

Make Observations

What do I see in nature?
This can be from one's
own experiences, thoughts,
or reading.

Think of Interesting Questions

Why does that pattern occur?

Refine, Alter, Expand, or Reject Hypotheses

Develop Testable Predictions

If my hypotesis is correct, then I expect a, b, c,...

Formulate Hypotheses

What are the general causes of the phenomenon I am wondering about?

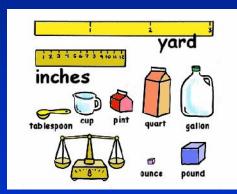
Scientific Observations

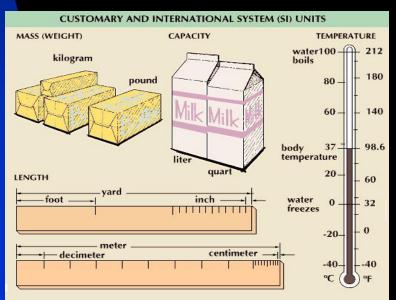
Making Observations

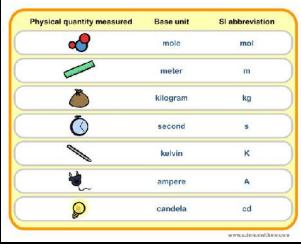
There are two different types of observations - qualitative observations and quantitative observations.

Quantitative Units of Measurement

US Standard System of Units

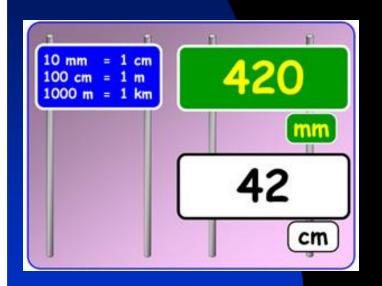

inch/foot square foot ounce/gallon ounce/pound second Fahrenheit


Measurable Physical Quantities


- 1) Distance -
- 2) Area -
- 3) Volume -
- 4) Mass -
- 5) Time -
- 6) Temperature -

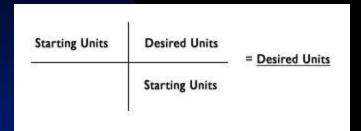
International Metric System of Units

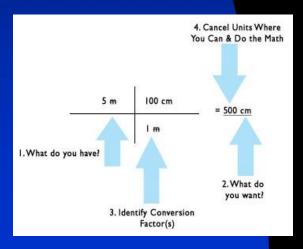
centimeter/meter square meter milliliter/liter gram/kilogram second Kelvin/Celsius

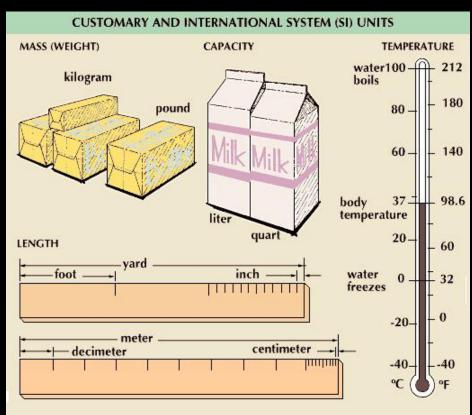


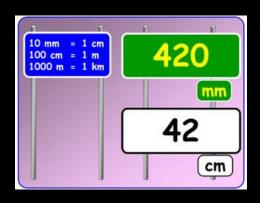
International Metric Units

Quantity measured	Unit	Symbol	Rel	atio	nship
	millimeter	mm	10 mm	=	1 cm
Length, width,	centimeter	cm	100 cm	=	1 m
distance, thickness, girth, etc.	meter	m			
	kilometer	km	1 km	=	1000 m
	milligram	mg	1000 mg	=	1 g
Mass	gram	g			
("weight")*	kilogram	kg	1 kg	=	1000 g
	metric ton	t	1 t	=	1000 kg
Time	second	s			
Temperature	degree Celsius	° C			
	square meter	m²			
Area	hectare	ha	1 ha	=	10 000 m ²
	square kilometer	km²	1 km²	=	100 ha
	milliliter	mL	1000 mL	=	1 L
Volume	cubic centimeter	cm³	1 cm³	=	1 mL
Volume	liter	L	1000 L	=	1 m³
	cubic meter	m³			
Speed velocity	meter per second	m/s			
Speed, velocity	kilometer per hour	km/h	1 km/h	=	0.278 m/s


Metric Unit Prefixes


Prefi x	Symbo I	Facto r	Numerically	Name
giga	G	10 ⁹	1 000 000 000	billion**
mega	M	10 ⁶	1 000 000	million
kilo	k	10 ³	1 000	thousand
centi	С	10-2	0.01	hundredth
milli	m	10 ⁻³	0.001	thousandt h
micro	μ	10 ⁻⁶	0.000 001	millionth
nano	n	10-9	0.000 000 001	billionth**


Converting Units of Measurement


Setting Up the Problem:

Example: Convert 15 m to ? cm

Converting Units

Make sure to:

- Find the proper conversion factor for the two units
- 2) Set up the equation with all numeric values having a unit symbol
- 3) Do the conversion making sure that the old unit cancels

APPROXIMATE CONVERSIONS FROM ENGLISH UNITS TO SI UNITS						
SYMBOI	WHEN YOU KNOW	MULTIPLY BY (CF)	TO FIND	SYMBOL		
		LENGTH				
in	inches	25.4	millimeters	mm		
ft	feet	0.305	meters	m		
yd	yards	0.914	meters	m		
mi	miles	1.61	kilometers	km		
		AREA				
in ²	square inches	645.2	square millimeters	mm ²		
ft²	square feet	0.093	square meters	m ²		
yd²	square yard	0.836	square meters	m ²		
ac	acres	0.405	hectares	ha		
mi²	square miles	2.59	square kilometers	km²		
VOLUME						
fl oz	fluid ounces	29.57	milliliters	mL		
gal	gallons	3.785	liters	L		
ft³	cubic feet	0.028	cubic meters	m ³		
yd³	cubic yards	0.765	cubic meters	m ³		
NOTE: volumes greater than 1000 L shall be shown in m ³						
MASS						
oz	ounces	28.35	grams	g		
lb	pounds	0.454	kilograms	kg		
т	short tons (2000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")		
TEMPERATURE (exact degrees)						
°F	Fahrenheit	5 (F-32) ÷ 9	Celsius	°C		

Metric Conversion Chart and Table

Lenath

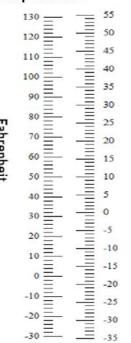
Length		
1 centimeter (cm)	=	10 millimeters (mm)
1 inch	=	2.54 centimeters (cm)
1 foot	=	0.305 meters (m)
1 foot	=	12 inches
1 yard	=	3 feet
1 meter (m)	=	100 centimeters (cm)
1 meter (m)	\cong	3.281 feet
1 furlong	=	660 feet
1 kilometer (km)	=	1000 meters (m)
1 kilometer (km)	~	0.62137119 miles
1 mile	=	5280 ft
1 mile	=	1.61 kilometers (km)
1 nautical mile	-	1.85 kilometers (km)

1 square foot	-	144 square inches
1 square foot		929.03 square centimeters
1 square yard		9 square feet
1 square meter	~	10.76104 square feet
1 acre	_	43,560 square feet
1 hectare	=	10,000 square meters
1 hectare	=	2.47 acres
1 square kilometer	-	100 hectares
1 square mile	=	2.59 square kilometers
1 square mile		640 acres

Speed

Area

1 mile per hour (mph)	~	1.467 feet per second (fps)
1 mile per hour (mph)	=	1.61 kilometers per hour
1 knot	\cong	1.15 miles per hour
1 foot per second	~	0.68 miles per hour (mph)
1 kilometer per beur		0.62 miles per hour (mph)

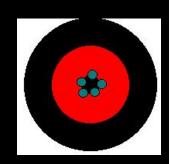

Volume

, oranic		
1 US tablespoon	=	3 US teaspoons
1 US fluid ounce	\cong	29.57 milliliters (ml)
1 US cup	-	16 US tablespoons
1 US cup	=	8 US fluid ounces
1 US pint	=	2 US cups
1 US pint	=	16 US fluid cunces
1 liter (I)	=	33.81 US fluid ounces
1 liter (I)	-	1000 milliliters (ml)
1 US quart	-	2 US pints
1 US gallon	=	4 US quarts
1 US gallon	_	3.785 liters

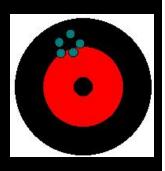
Weight

rreigin		
1 milligram (mg)	=	0.001 grams (g)
1 gram (g)	=	0.001 kilograms (kg)
1 gram (g)	~	0.035 cunces
1 ounce	=	28.3 grams (g)
1 ounce	=	0.0625 pounds
1 pound (lb)	=	16 ounces
1 pound (lb)	=	0.45 kilograms (kg)
1 kilogram (kg)	=	1000 grams
1 kilogram (kg)	\cong	35.27 ounces
1 kilogram (kg)	~	2.2 pounds (lb)
1 stone	=	14 pounds
1 short ton	=	2000 pounds
1 metric ton	=	1000 kilograms (kg)

Temperature



Accuracy, Precision and Uncertainty in Measurement


1) **Accuracy** of the measurement refers to how close the measured value is to the true or accepted value.

- 2) **Precision** refers to how close together a group of measurements actually are to each other.
- 3) Accuracy can be determined by only one measurement, while precision can only be determined with multiple measurements.

- 4) Precision has nothing to do with the true or accepted value of a measurement, so it is quite possible to be very precise and totally inaccurate.
- 5) When precision is high and accuracy is low, the fault can lie with the instrument.

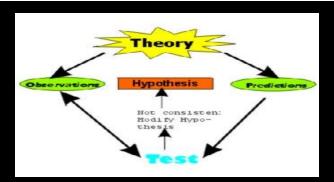
Significant Digits or Figures

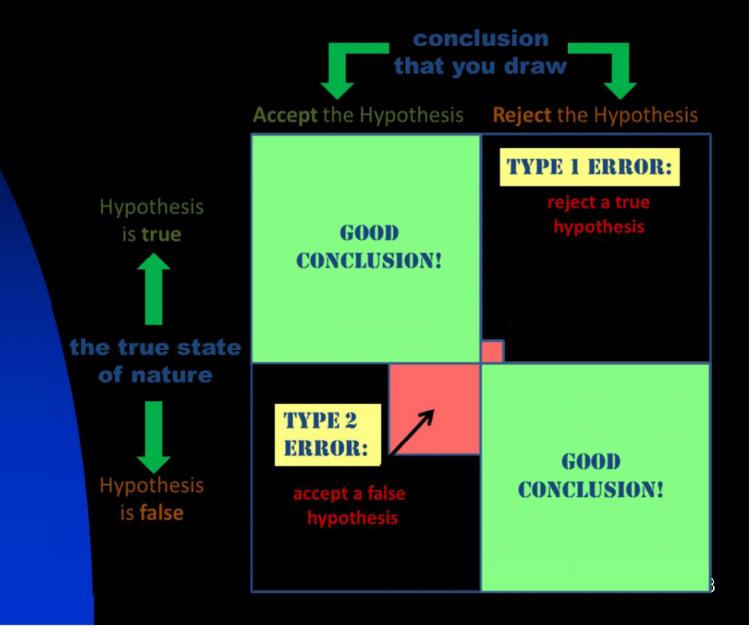
Rules For Significant Digits

- 1. Digits from 1-9 are always significant.
- 2. Zeros between two other significant digits are always significant
- 3. One or more additional zeros to the right of both the decimal place and another significant digit are significant.
- 4. Zeros used solely for spacing the decimal point (placeholders) are not significant.

EXAMPLES	# O	F SIG. DIG.	COMMENT
453 g		3	All non-zero digits are always significant.
5057 L		4	Zeros between 2 sig. dig. are significant.
5.00 ml		3	Additional zeros to the right of decimal and a sig. dig. are significant.
0.007 km		1	Placeholders are not sig.

Hypotheses and Scientific Testing

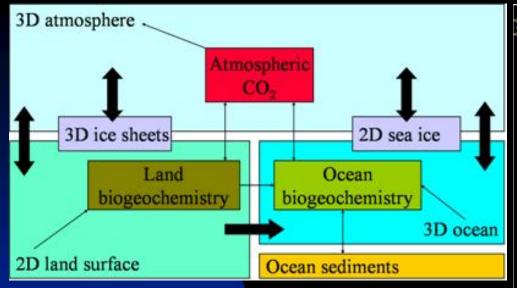


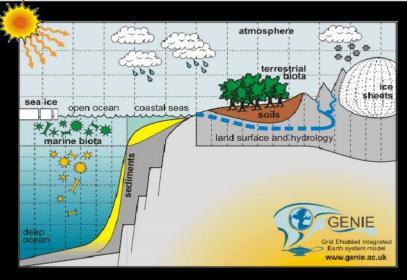

Observations and Predictions

Testing Hypotheses and Theories

- 1) A hypothesis is a simple explanation, model, or prediction of nature that requires testing (attempt to falsify or confirm).
- 2) Hypotheses are based on empirical physical evidence (data).
- 3) Hypotheses must be falsifiable (testable/predictable).
- 4) Hypotheses can never be proven as an absolute fact.
- 5) Hypotheses are always open to elimination or modification.
- 6) A theory is a broad, elegant, unifying explanation of a set of otherwise unconnected natural phenomena.
- 7) A theory is established by the interconnection (framework) of well-tested and confirmed hypotheses that are, in turn, supported by an enormous amount of physical evidence.

Testing Your Hypothesis




Scientific Predictions

Prediction

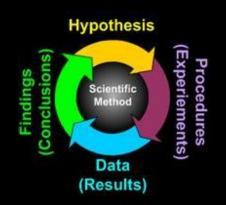
• A statement of what may happen in the future based on observations, data, experience or scientific reason

Scientific Modeling and Predicting

Purpose of Modeling: Understand and predict how parts of the Earth operate and interact with each other

- --- Start simple and get more complicated over time
- --- Add more and more parameters over time
- --- Test computer models with real historic data
- ---- Develop and refine models to predict future scenarios

Application of the Scientific Method

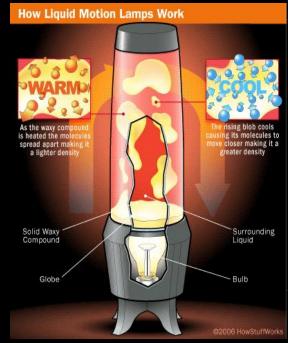

Glitter Lamp Inquiry

Purpose:

Use the scientific method to gain a better understanding of how a glitter lamp works as a dynamic system

Procedure:

Make good observations, explanations, predictions, and tests on the lamp. Focus on the dynamic properties of the lamp.



Lava Lamp as a Model for Convection

Convection Process

- ✓ Fluid material at top of lamp is cooler than material at the bottom.
- ✓ Hotter material is less dense than cooler material
- ✓ Less dense fluid rises while more dense fluid sinks
- ✓ Heat and gravity drive the system
- ✓ Earth's atmosphere, ocean, mantle and core undergo convection

Mantle-Core Convection 42