Science of Geology

Geology is the scientific study of the Earth

An interdisciplinary science

Seismic Studies

Marine Studies

Volcanic Studies

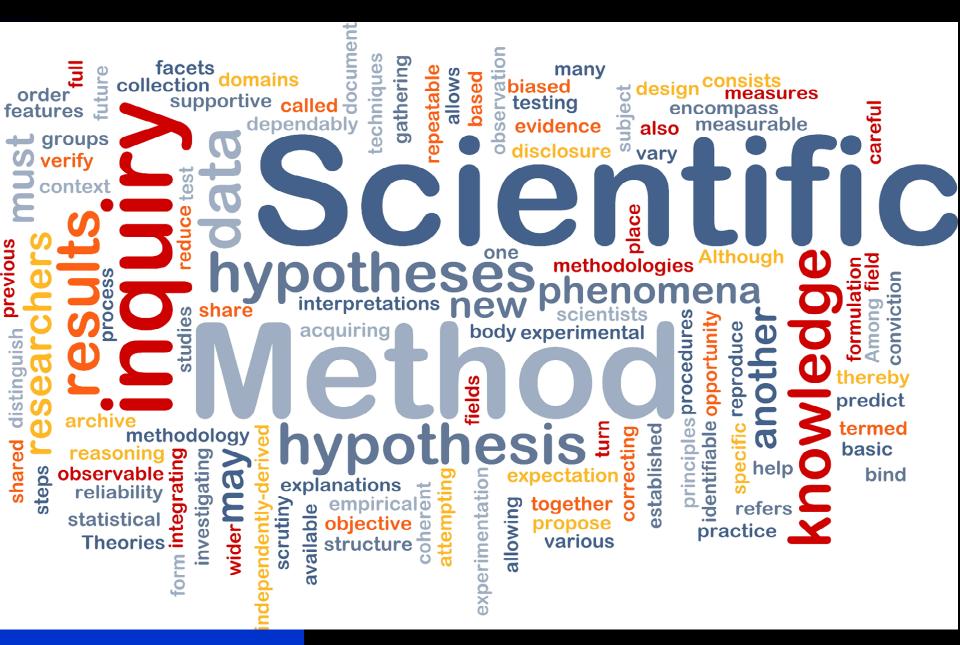
GEOLOGY --- an Interdisciplinary Science

Geology integrates many different types of geosciences

- Mineralogy and Petrology the study of minerals and rocks
- Marine geology the study of Earth's ocean bottom
- **Geochemistry** study of chemical nature of rocks, minerals and fluids
- **Hydrology** study of rivers, groundwater, flooding, dams
- Volcanology study of the nature and distribution of volcanoes
- Engineering geology- design and construction of structures
- **Structural geology** form and development of geologic structures
- **Geophysics** study of forces and mechanisms of geologic phenomena
- Environmental geology study of geological resources and pollution
- Petroleum geology Locate. assess, and extract oil and natural gas

What Do Geologists Do?

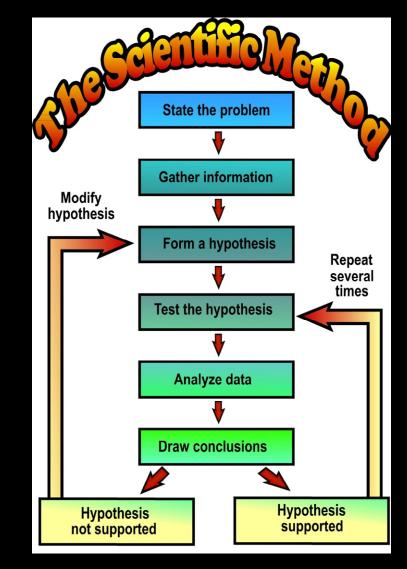
Answer: ...they do earth science.



Science defined: The investigation and acquisition of useful, reliable knowledge of earth's crust that is based on empirical observations (physical evidence).

- Earth scientists use a powerful way of thinking, that is rational, logical, and organized, called *scientific thinking*.
- Intelligence, imagination, creativity, inspiration, and luck are other important attributes of scientific study.
- Earth scientists use a powerful approach to inquiry called the scientific method.

Central to science is community and peer review.


The Scientific Method – Heart of Science

THE SCIENTIFIC METHOD

The Basic Components

 Empirical Observations ✓ Questions / Problems Hypotheses / Models ✓ Predictions ✓ Tests / Experiments ✓ Analysis of Results ✓ Draw Conclusions Reevaluate Hypothesis

Note: The scientific method is NOT a recipe – it's a process 5

Today's Ocean Lab: *Investigation and Application of the Scientific Method*

Investigation and Application of the Scientific Method

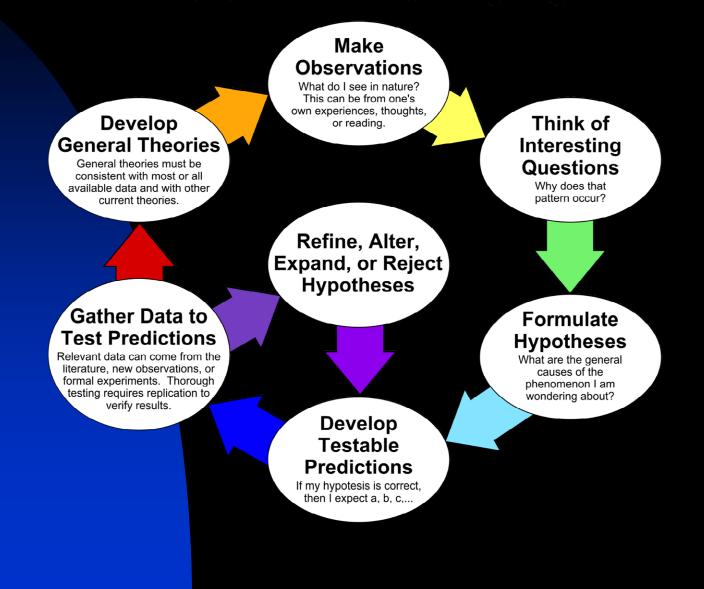
Scientific Method

OBSERVATION

HYPOTHESIS

Star	Color			
Star	Celler	Spectrum	Class	Other Observations
1				
2				
3				
4				
5				
6				
7				
9				
10				

-A


-T

ANALYZE DATA

CONCLUSION

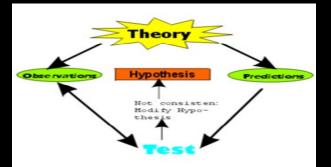
Scientific Method is an Ongoing Process

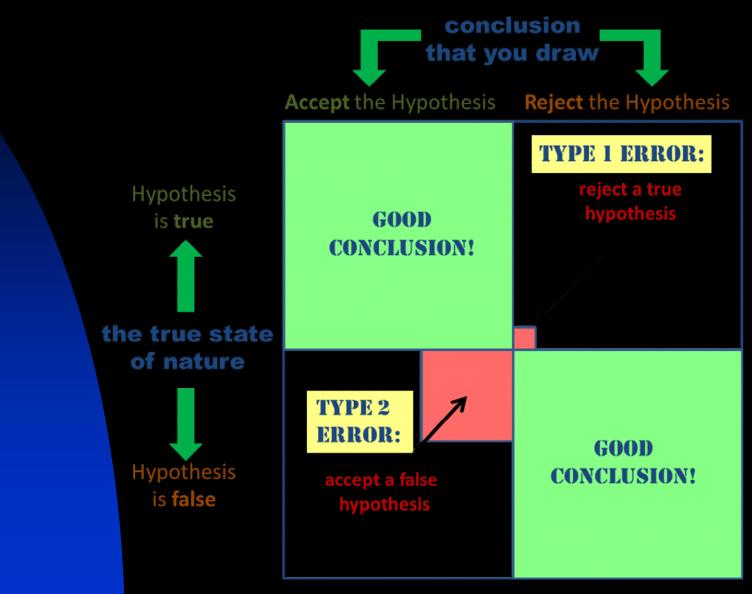
Scientific *Observations*

Making Observations

There are two different types of observations - qualitative observations and qualitative observations.

Hypotheses and Scientific Testing



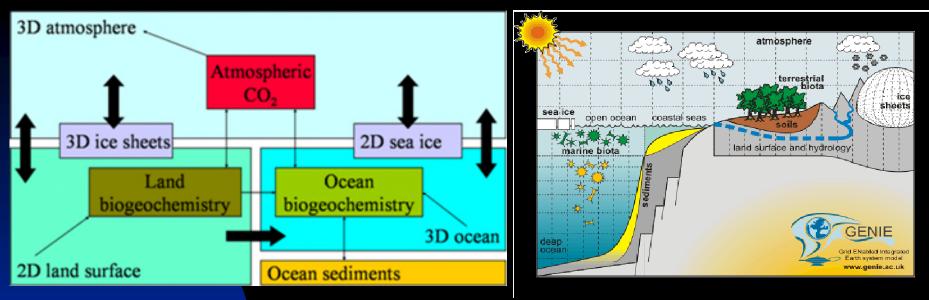

Observations and Predictions

Testing Hypotheses and Theories

- 1) A hypothesis is a simple explanation, model, or prediction of nature that requires testing (attempt to falsify or confirm).
- 2) Hypotheses are based on empirical physical evidence (data).
- 3) Hypotheses must be falsifiable (testable/predictable).
- 4) Hypotheses can never be proven as an absolute fact.
- 5) Hypotheses are always open to elimination or modification.
- 6) A theory is a broad, elegant, unifying explanation of a set of otherwise unconnected natural phenomena.
- A theory is established by the interconnection (framework) of well-tested and confirmed hypotheses that are, in turn, supported by an enormous amount of physical evidence.

Testing Your Hypothesis

Scientific *Predictions*


Prediction

 A statement of what may happen in the future based on observations, data, experience or scientific

reason

Scientific Modeling and Predicting

Purpose of Modeling: Understand and predict how parts of the Earth operate and interact with each other

- --- Start simple and get more complicated over time
- --- Add more and more parameters over time
- --- Test computer models with real historic data
- ---- Develop and refine models to predict future scenarios

Application of the Scientific Method

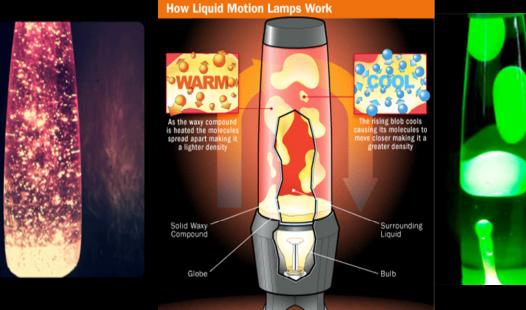
Glitter Lamp Inquiry

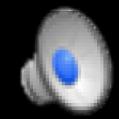
Purpose: Use the scientific method to gain a better understanding of how a glitter lamp works as a dynamic system

Procedure:

Get into groups of 2 to 4. Make good observations, explanations, predictions, and tests on the lamp. Focus on the dynamic properties of the lamp.

Lava Lamp as a Model for Convection Convection Process


 ✓ Fluid material at top of lamp is cooler than material at the bottom.


✓ Hotter material is less
dense than cooler material

✓ Less dense fluid rises
while more dense fluid
sinks

✓ Heat and gravity drive the system

 Earth's atmosphere, ocean, mantle and core undergo convection

Mantle-Core Convection ¹⁶

Application of the Scientific Method

Glitter Lamp Inquiry

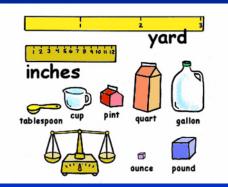
Purpose: Use the scientific method to gain a better understanding of how a glitter lamp works as a dynamic system

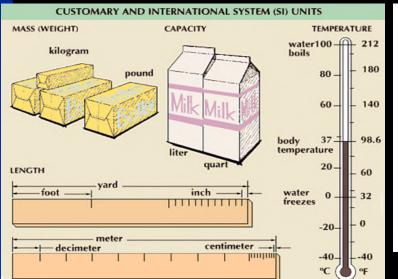
Procedure:

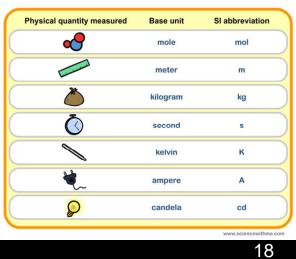
Get into groups of 2 to 4. Make good observations, explanations, predictions, and tests on the lamp. Focus on the dynamic properties of the lamp.

Quantitative Units of Measurement

U	I <mark>S</mark> S	Sta	nd		
Sys	ste	m	of	Un	its

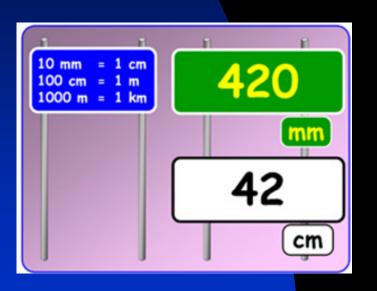

inch/foot square foot ounce/gallon ounce/pound second Fahrenheit


<u>Measurable Physical</u> <u>Quantities</u>


- 1) Distance -
- 2) Area -
- 3) Volume -
- 4) Mass -
- 5) Time -
- 6) Temperature -

International Metric System of Units

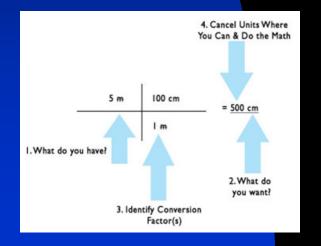
centimeter/meter square meter milliliter/liter gram/kilogram second Kelvin/Celsius

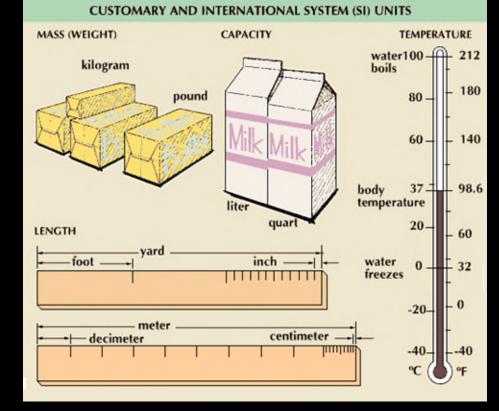


International Metric Units

Quantity measured	Unit	Symbol	Rel	atio	nship
	millimeter	mm	10 mm	=	1 cm
Length, width, distance, thickness,	centimeter	cm	100 cm	=	1 m
girth, etc.	meter	m			
	kilometer	km	1 km	=	1000 m
	milligram	mg	1000 mg	=	1 g
Mass	gram	g			
("weight")*	kilogram	kg	1 kg	=	1000 g
	metric ton	t	1 t	=	1000 kg
Time	second	S			
Temperature	degree Celsius	°C			
	square meter	m²			
Area	hectare	ha	1 ha	=	10 000 m²
	square kilometer	km²	1 km²	=	100 ha
	milliliter	mL	1000 mL	=	1 L
Volume	cubic centimeter	CM ³	1 cm ³	=	1 mL
Volume	liter	L	1000 L	=	1 m³
	cubic meter	m ³			
Speed, velocity	meter per second	m/s			
opeed, velocity	kilometer per hour	km/h	1 km/h	=	0.278 m/s

Metric Unit Prefixes


Prefi x	Symbo I	Facto r	Numerically	Name
giga	G	10 ⁹	1 000 000 000	billion**
mega	Μ	10 ⁶	1 000 000	million
kilo	k	10 ³	1 000	thousand
centi	С	10-2	0.01	hundredth
milli	m	10 ⁻³	0.001	thousandt h
micro	μ	10 ⁻⁶	0.000 001	millionth
nano	n	10 ⁻⁹	0.000 000 001	billionth**


Converting Units of Measurement

Setting Up the Problem:

Example: Convert 15 m to ? cm

Converting Units

Make sure to:

- 1) Find the proper conversion factor for the two units
- 2) Set up the equation with all numeric values having a unit symbol
- 3) Do the conversion making sure that the old unit cancels

APPROXIMATE CONVERSIONS FROM ENGLISH UNITS TO SI UNITS

SYMBOL	WHEN YOU KNOW	MULTIPLY BY (CF) TO FIND		SYMBC)L	
	LENGTH					
in	inches	25.4	millimeters	mm		
ft	feet	0.305	meters	m		
yd	yards	0.914	meters	m		
mi	miles	1.61	kilometers	km		
AREA						
in²	square inches	645.2	square millimeters	mm ²		
ft²	square feet	0.093	square meters	m²		
yd²	square yard	0.836	square meters	m²		
ac	acres	0.405	hectares	ha		
mi²	square miles	2.59	square kilometers	km²		
		VOLUME				
fl oz	fluid ounces	29.57	milliliters	mL		
gal	gallons	3.785	.785 liters			
ft ³	cubic feet	0.028	cubic meters			
yd ³	cubic yards	0.765	cubic meters	m ³		
	NOTE: volumes	greater than 1000 L sl	nall be shown in m ³			
		MASS				
oz	ounces	28.35	grams	g		
lb	pounds	0.454	kilograms	kg		
т	short tons (2000 0.907 megagrams (or " lb) "metric ton") Mg (or "		Mg (or "t	")		
	TE	IPERATURE (exact de	grees)			
°F	Fahrenheit	5 (F-32) ÷ 9	Celsius		° C	

Metric Conversion Chart and Table

Length

•		
1 centimeter (cm)	=	10 millimeters (mm)
1 inch	=	2.54 centimeters (cm)
1 foot	=	0.305 meters (m)
1 foot	=	12 inches
1 yard	=	3 feet
1 meter (m)	=	100 centimeters (cm)
1 meter (m)	\cong	3.281 feet
1 furlong	=	660 feet
1 kilometer (km)	=	1000 meters (m)
1 kilometer (km)	\cong	0.62137119 miles
1 mile	=	5280 ft
1 mile	=	1.61 kilometers (km)
1 nautical mile	=	1.85 kilometers (km)

Area

1 square foot	=	144 square inches
1 square foot	=	929.03 square centimeters
1 square yard	=	9 square feet
1 square meter	\cong	10.76104 square feet
1 acre	=	43,560 square feet
1 hectare	=	10,000 square meters
1 hectare	ĩ	2.47 acres
1 square kilometer	=	100 hectares
1 square mile	\cong	2.59 square kilometers
1 square mile	=	640 acres

Speed

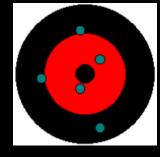
			_
Speed			Fahrenh
1 mile per hour (mph)	\cong	1.467 feet per second (fps)	re
1 mile per hour (mph)	=	1.61 kilometers per hour	롸
1 knot	ĩ	1.15 miles per hour	eit
1 foot per second	\cong	0.68 miles per hour (mph)	ť
1 kilometer per hour	\simeq	0.62 miles per hour (mph)	

Volume

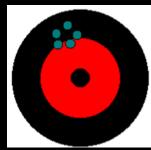
1 US tablespoon	=	3 US teaspoons
1 US fluid ounce	\cong	29.57 milliliters (ml)
1 US cup	=	16 US tablespoons
1 US cup	=	8 US fluid ounces
1 US pint	=	2 US cups
1 US pint	=	16 US fluid ounces
1 liter (I)	\cong	33.81 US fluid ounces
1 liter (l)	=	1000 milliliters (ml)
1 US quart	=	2 US pints
1 US gallon	=	4 US quarts
1 US gallon	=	3.785 liters

Weight

1 milligram (mg)	=	0.001 grams (g)
1 gram (g)	=	0.001 kilograms (kg)
1 gram (g)	\cong	0.035 ounces
1 ounce	=	28.3 grams (g)
1 ounce	=	0.0625 pounds
1 pound (lb)	=	16 ounces
1 pound (lb)	=	0.45 kilograms (kg)
1 kilogram (kg)	=	1000 grams
1 kilogram (kg)	\cong	35.27 ounces
1 kilogram (kg)	\cong	2.2 pounds (lb)
1 stone	=	14 pounds
1 short ton	=	2000 pounds
1 metric ton	=	1000 kilograms (kg)


Temperature


130			55
120	Ξ_	_	50
110	=	_	45
	Ξ	_	40
100	Ξ	_	35
90	<u> </u>	_	30
80	<u> </u>		25
70	<u> </u>	_	20
60	≣		15
50	<u> </u>	_	10
40	Ξ_		5
30	Ξ	_	0
20	Ξ		-5
	Ē	_	-10
10	Ξ_	_	-15
0	<u> </u>		-20
-10	<u>=</u>	_	-25
-20	<u> </u>	_	-30
-30	≡_	_	-35


Celsius

Accuracy, Precision and Uncertainty in Measurement

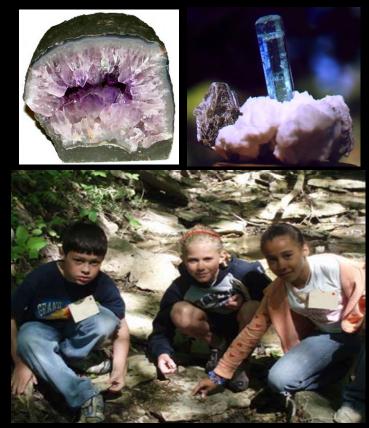
- 1) **Accuracy** of the measurement refers to how close the measured value is to the true or accepted value.
- 2) **Precision** refers to how close together a group of measurements actually are to each other.
- 3) Accuracy can be determined by only one measurement, while precision can only be determined with multiple measurements.
- Precision has nothing to do with the true or accepted value of a measurement, so it is quite possible to be very precise and totally inaccurate.
- 5) When precision is high and accuracy is low, the fault can lie with the instrument.

Significant Digits or Figures

Rules For Significant Digits

- **1. Digits from 1-9 are always significant.**
- 2. Zeros between two other significant digits are always significant
- 3. One or more additional zeros to the right of both the decimal place and another significant digit are significant.
- 4. Zeros used solely for spacing the decimal point (placeholders) are not significant.

EXAMPLES	# 0	F SIG. DIG.	COMMENT
453 g		3	All non-zero digits are always significant.
5057 L		4	Zeros between 2 sig. dig. are significant.
5.00 ml		3	Additional zeros to the right of decimal and a sig. dig. are significant.
0.007 km		1	Placeholders are not sig.


Next Weeks Lab Topic

Minerals

- Define
- Formation of Minerals
- Mineral Classification
- Physical Properties
- Identification

Pre-lab Exercises

- Read Mineral Chapter in Lab Textbook
- Complete the Pre-labs

