
Natural Disasters Laboratory EOSC105 – Wednesday Lab Spring 2020 Semester

University of San Diego

Ray Rector: Instructor

First Day Agenda

- Course Description
 Review of Course Syllabus
 Instructor Background
 Student Introductions
 Safety Instruction
 Geologic Timescale
 - Minerals for Next Week's Lab

Course Description

- Hands-on, Inquiry-based Lab and Field Activities Examining Features and Processes of the Earth
- Topics Include:
 - Scientific Method
 - ***** Geologic Time and Dating
 - * Minerals snd Rocks
 - ★ Plate Tectonics
 - * Topographic Maps
 - Earthquakes
 - ***** Volcanic Eruptions
 - ⋆ Mass Wasting
 - ★ Tsunami
 - ★ Fires
 - ★ Storms
 - Climate Change

Course Design

Laboratory-Based Format

Course Activities Include:

- Group-centered, hands-on, inquiry-based lab exercises
- ★ Field trips
- Online interactive exercises
- Lab discussion forums
- Demonstrations
- Instructor presentations

Course Syllabus

- Basic Logistics
- Course Objectives
- Important Enrollment Dates
- Instructor's Attendance Policy
- Grading
- Field Trips
 - Classroom Website
- Schedule of Study
 - Safety Concerns

http://www.geoscirocks.com/

EOSC 105 Lab Link

Wise Suggestions for my Students of Earth Science

- 50% Motivation 50% Perspiration
- SHOW UP for ALL laboratory meetings
- DO the Pre-lab assignment BEFORE the corresponding laboratory meeting
- ASK lots of questions
- BE PROACTIVE in lab and field activities and discussions
- STAY ALERT in lab and field activities
- HAVE FUN learning about the Earth

Laboratory Safety Issues

Laboratory Safety Rules

- 1) No food or drinks allowed in lab at any time. Drinks to be stored outside of lab.
- Everyone must wear closed-toed shoes while in lab no exceptions. Any student who shows up without closed-toed shoes on will not get credit for that days laboratory work.
- 3) Any/all lab accidents, injuries, or unsafe medical/health conditions/events however minor must be reported to the lab instructor immediately.
- Only authorized lab experiments or procedures can be preformed. All authorized experiments or procedures must be performed as described and/or demonstrated by the laboratory instructor.
- 5) Personal belongings need to be stored in a place that will not impede students' movement in and around the lab, nor clutter lab table space.
- 6) Horseplay, running, or other potentially unsafe activities while in lab is strictly forbidden.
- 7) When the fire alarm goes off, everyone must leave the lab room immediately in a calm orderly fashion to the designated outside emergency assembly area. Know where the assembly area is located.

Professor Ray

- Instructor's Academic Background
- Instructor's Passion for Geology
- Instructor's Role in Classroom
- Instructor's Teaching Philosophy

Who am I?

EARTH SCIENCE EDUCATION

California Single Subject Teaching Credential – Geosciences -California State University, San Marcos, CA

- > 35 graduate-level semester units completed; GPA = 3.9
- Cross-Cultural Language and Academic Development
- > Additional emphasis of technology in the classroom

Earth Science Doctoral Program – Volcanism and Tectonics University of California Riverside, Riverside, CA.

- > 38 graduate-level semester units completed; GPA = 3.9
- Graduate Division Fellowship
- Mineralogical Society of America scholarship

Master of Science Degree – Igneous Petrology San Diego State University, San Diego, CA

> 35 graduate-level semester units completed; GPA=3.9

Achievement Rewards for College Scientists Scholarship

Bachelor of Science Degree - Magna Cum Laude - Geology San Diego State University, San Diego, CA

- > 172 semester units completed; GPA = 3.8
- Outstanding Senior Research Award--College of Sciences
- Outstanding Research Award—Department Of Geology

Engineering Undergraduate Program California State University, Northridge, CA

Marine Engineering emphasis

TEACHING EARTH SCIENCE

Cuyamaca College, El Cajon, CA Oceanography Lecture	2013 - 2016
University of San Diego, San Diego, CA Earth Science Laboratory	2007 - Present
 MiraCosta College, Oceanside, CA Oceanography Lecture and Laboratory Online Geology 	2004 - Present
 San Diego Miramar College, San Diego, CA Geology Laboratory Online Oceanography Lecture 	2003 - Present
San Diego Mesa College, San Diego, CA Online Geology Lecture Geology Laboratory 	2002 - Present
University of California Riverside, Riverside, CA General geology, Historical geology, Mineralogy, Optical mineralogy, Igneous petrology, and Metamorphic petrology	1994-1997
 San Diego State University, San Diego, CA General geology laboratory Advanced field geology course in Baja, Mexico. 	1991-1993 1 [.]

Professor's Interests

Travel to Cool Places, Adventure, Hanging Out, and Partying with Fun and Interesting Friends

Outdoor Sports

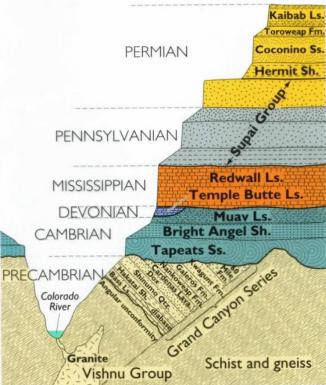
Summer 2018 Adventure – Lake Tahoe

Tahoe

Bline

Last Summer's Adventure – Grand Cayman Island

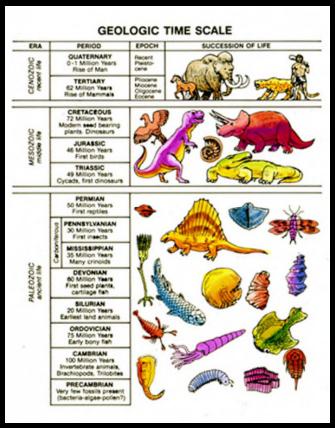
Winter 2020 Adventure – The Big Island


Who are You?

- Your Name
- Academic Focus
- Personal Interests
- Earth/Geology Interests?

Wishing Everyone a Great Spring Semester!

GEOLOGIC TIMEPrinciples and Applications


Natural Disaster Laboratory - ENVI 105

Ray Rector - Instructor

Geologic Time Laboratory

Today's Topics of Inquiry

1) Age of the Earth 2) Geo-dating Principles 3) Dating Geologic Events 4) Fossils and the Geologic Time Scale 5) Construct a Geo-Timeline

Earth's Age and History

How Old Is the Earth?

How Can We Determine Earth's Geologic History?

Scientific Means of Dating Earth

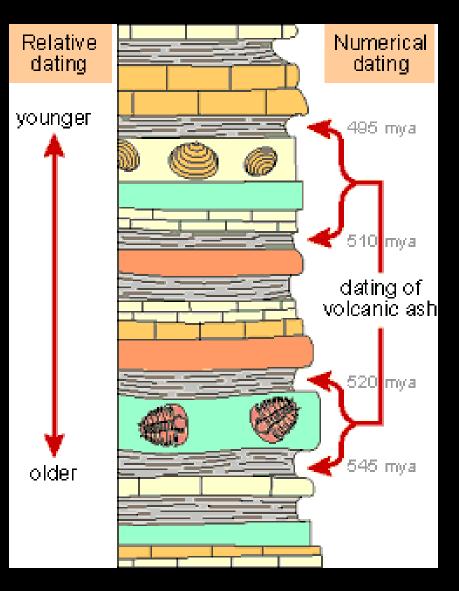
Two Primary Means of Dating Rocks:

1) Relative Dating

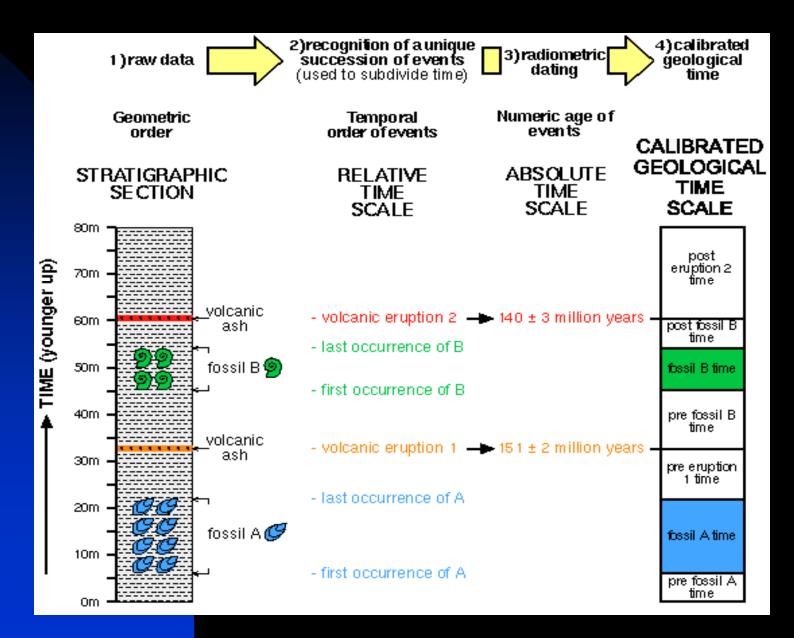
- Determines the temporal order of rock forming events
- Does not give numeric ages
- Use of stratigraphic principles and fossils

2) Absolute Dating

- Determines the numeric age of rock forming events
- ✓ Only appropriate for ages of igneous rocks and minerals
- Primary method is the radiometric technique
- Used in conjunction with stratigraphic principles and fossils


Relative Versus Absolute Dating

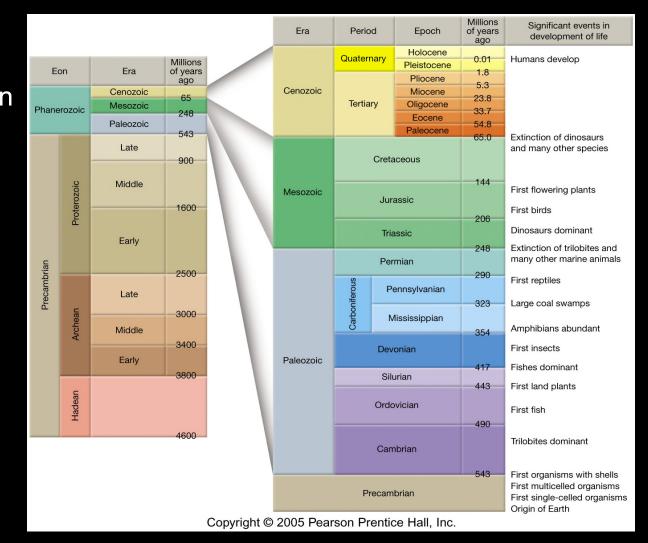
Relative Dating Stratigraphic principles Fossil Succession


Absolute Dating

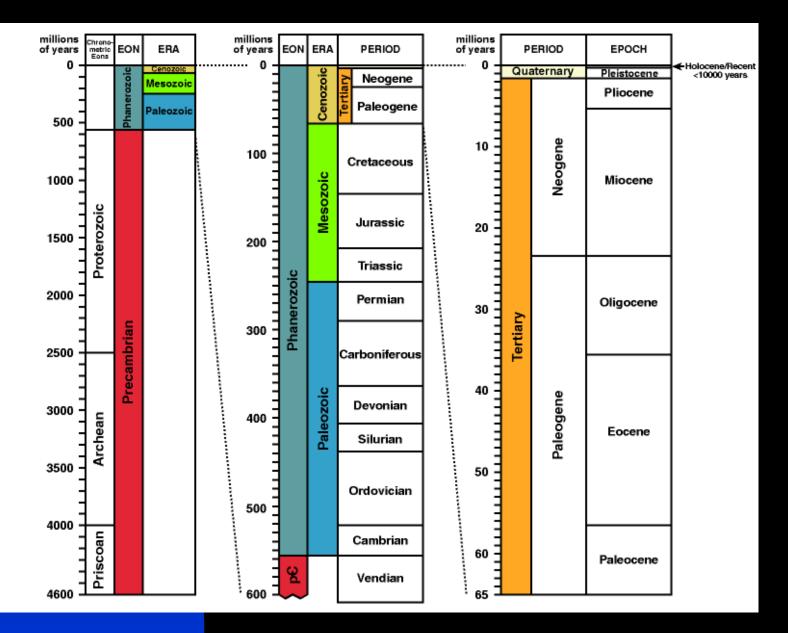
Radiometric techniques

Igneous layers

Combined Use of Relative and Absolute Dating


THE GEOLOGICAL TIMESCALE

Key Ideas:


 ✓ Originally based on relative dating and the use of agespecific fossils

✓ Periods separated
 by mass extinction
 events

 ✓ Numeric ages derived from radiometric analysis of igneous rocks found within the stratigraphic record

THE GEOLOGICAL TIME SCALE

MAKE YOUR OWN GEOLOGICAL TIME LINE

EO	N ER	PERIOD		EPOCH	Ма	"FOSSIL RECORD"
Phanerozoic		Quaterna	Quaternary		- 0.01 -	Human civilizations evolve, great extinctions begin Ice Ages and interglacial periods cause widepread changes in climate Modern humans evolve and migrate around the world
	<u>.</u>		Neogene	Pliocene	- 2.6 -	First ice ages begin as Himilayan Mountains rise, Isthmus of Panama closes Most modern families of mammals evolve and migrate across land bridges
	Cenozoic	Tertiary endogene	Neo	Miocene	- 23 -	Grasses evolve and spread worldwide Yellowstone Hotspot migrates eastward, Colorado Plateau and Great Plains rise Great Basin extension begins as San Andreas Fault System develops
	Se		ne	Oligocene	- 33.9 -	Deciduous forests (leaves fall in winter) dominate temporate climates
			Paleoge	Eocene Paleocene	- 56 -	Rocky Mountains rise, shedding sediments throughout western US region "Age of Mammals" begins Western Interior Seaway vanishes Cretaceous/Tertiary boundary extinction wipes out dinosaurs, ammonites, etc.
	<u>i</u>	Cretaceou	IS		- 66 - - 145 -	"Greenhouse Earth" - Dinosaurs at their "peak" Western Interior Seaway forms in Great Plain region
	esozoic	Jurassic			- 201	Breakup of Supercontinent Pangaea, birds and early mammals appear
	Σ	Triassic				Dinosaurs (warm blooded) replace reptiles (cold blooded) as dominant land animals
		Permian			- 252 -	End of Permian extinction greatest of all extinction events "Age of Reptiles" - Pangaea Supercontinent forms
		Pennsylvani Mississippia			- 299 - - 323 -	Carboniferous Period - great coal swamps form as Appalachian Mountains form
	0				- 359 -	"Age of Amphibians"
	zoic	Devoman			- 419 -	"Age of Fishes" First forests (coal beds) appear
	Paleozoic	Silurian			- 444 -	
	Pa	Ordovicia	n		- 485 -	"Age of Invertebrates" - brachiopods, trilobites, corals First land plants evolve
		Cambrian				First shelled invertebrates appear
	2				- 541 -	Multicellular organisms evolve
rian	Proterozoic					Modern continental shield regions of continents gradually assemble
Hadean Archean Proteroz					-2500	Banded Iron Formations are deposited as oxygen atmosphere forms Stromatolites appear in "fossil record" single-celled organisms evolve
					-4000	Oldest rocks preserved
	Паце				- 4500	Solar System forms, Moon and Earth system forms by accretion of extraterrestial materia

Next Lab Topic

Minerals

- Define
- Origin and Importance to Formation of Ro
- Classification Mineral Groups
- Physical Properties
- Identification

