Isostasy and Tectonics Lab Understanding the Nature of Mobile Floating Lithospheric Plates

Crust – Mantle Dynamics

Intro to Earth Systems ENVI-110 Lab Ray Rector - Instructor

Isostacy and Tectonics Laboratory

Topics of Inquiry

- 1) Concepts of Density and Buoyancy
- 2) Layered Physiology of the Earth
- 3) Isostatic Dynamics Equilibrium vs. Adjustment
- 4) Modeling Isostasy in Lab
- 5) Plate Tectonic Theory
- 6) PT Processes:
 - Seafloor Spreading
 - ✓ Subduction
 - ✓ Hot Spots
- 7) Inter-Plate Dynamics

8) Measuring Plate Motion

Inquiry of Lava Lamp Motion

Density, Gravity and the Convection Process

 ✓ Differential Heating of a Fluid Under the Influence of Gravity:
 Fluid material at bottom of lamp is overheated; material at the top of lamp is under-heated (cooler).

✓ Hotter material is less dense than cooler material

✓ Less dense fluid rises while more dense fluid sinks

 Heat and gravity drive the movement in the system

Convection Process

Convection Inside Our Planet

Concept of Density

- 1) Density is an important intensive property
- 2) Density is a function of a substance's mass and volume

3) The density of a substance is a measure of how much mass is present in a given unit of volume.

➤The more mass a substance has per unit volume, the greater the substance's density.

➤The less mass a substance has per unit volume, the lesser the substance's density.

$$Denisty = \frac{mass}{volume}$$
 or $D = \frac{m}{v}$

4) Gravity controls the weight of a given volume of a substance, based on the substance's density
The more dense the material, the heavier it weighs.
The less dense the material, the less it weighs.

Elements – Crustal Mass and Density

Periodic Table of Elements

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 ¹ H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	C Solid			Metals					Nonmetals								к
2	3 ² Li Lithium 6.941	4 22 Be Beryllium 9.012182	Hg Liquid H Gas		Alkali me	 Alkaline earth mel	Lanthanoi	metals	Poor met Transitior	Other nonmetal	Noble ga	5 ² / ₃ B Boron 10.811	6 2 4 C Carbon 12.0107	7 25 N Nitrogen 14.0087	8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 ² 7 F Fluorine 18.9984032	10 28 Neon 20.1797	KL	
3	11 ² Na ^{Sodium} 22.98976928	12 ⁸ / ₂ Mg Magnesium 24.3050	Rf Unknown			tals		Actinoids 5		tals	<u>v</u>	Ses	13 28 3 Al Aluminium 26.9815386	14 28 Silicon 28.0855	15 2 P Phosphorus 30.973762	16 28 Sulfur 32.085	17 28 CI Chlorine 35.453	18 28 Ar Argon 39.948	K L M
4	19 ² K ¹ Potassium 39.0983	20 28 Ca Calcium 40.078	21 28 Scandium 44.955912	22 28 Ti ¹⁰ ² ¹⁰ ² ¹⁰	23 28 V 11 Vanadium 50.9415	24 28 Cr 13 Chromium 51.9961	25 Mn Manganese 54.938045	26 26 28 2 Fe 2 14 14 155.845	27 Co Cobalt 58.933195	28 28 8 Ni 16 Nickel 58.6934	29 28 Cu 18 Copper 63.548	30 28 Zn 2 Zinc 65.38	31 28 18 3 Gallium 69.723	32 28 Ge 4 Germanium 72.64	33 2 As ¹⁸ Arsenic 74.92160	34 28 Se 6 Selenium 78.96	35 ² Br ¹⁸ ⁷ ⁷ ⁷ ⁹	36 28 Kr Krypton 83.798	K L M N
5	37 28 Rb 18 Rubidium 85.4678	38 28 Sr 28 Strontium 87.62	39 28 Y 92 Yttrium 88.90585	40 28 Zr 18 21 21 21 21 21 21 21 21 21 21	41 28 Nb 12 Niobium 92.90638	42 Mo 95.96	43 Tc (97.9072)	44 Ru 101.07	45 Rh 102.90550	46 28 Pd 18 Palladium 106.42	47 28 Ag 18 Silver 107.8882	48 28 Cd 18 Cadmium 112.411	49 28 In 18 Indium 114.818	50 28 Sn 18 4 Tin 118.710	51 28 Sb 18 18 18 18 18 18 18 18 18 18	52 28 Te 18 18 18 18 18 18 18 18 18 18 18 18 18 1	53 28 18 18 18 7 10dine 126.90447	54 28 Xe 18 Xenon 131.293	K LMNO
6	55 2 Cs 18 Caesium 1 132.9054519	56 2 Ba 18 Barium 2 137.327	57–71	72 28 Hf 18 Hafnium 2 178.49	73 28 Ta 18 Tantalum 180.94788	74 28 W 183.84	75 Re Rhenium 188.207	76 Os 190.23	77 Ir Iridium 192.217	78 28 Pt 32 Platinum 1 195.084	79 28 Au 18 Gold 1 196.966569	80 28 Hg 18 Mercury 200.59	81 28 TI 38 Thallium 204.3833	82 28 Pb 322 Lead 4 207.2	83 28 Bi 18 Bismuth 208.98040	84 28 Polonium (208.9824)	85 28 At 18 Astatine 7 (209.9871)	86 28 Rn 32 Radon (222.0176)	KLNDP
7	87 2 Fr 16 Francium 21 (223)	88 2 Ra 3 Rad 3 Rad 3 18 18 18 18 18 18 18 18 18 18	89–103	104 28 Rf 18 Rutherfordium 22 (281) 2	105 28 Db 322 Dubnium 211 (262) 21	106 28 Sg 32 Seaborgium 22 (288)	107 Bh Bohrium (284)	108 108 Hs Hassium (277)	109 Mt Meitnerium (288)	110 28 Ds 322 Darmstadtium 1 (271)	111 28 Rg 18 Roentgenium (272)	112 Uub Ununbium (285) 2 2 2 2 2 2 2 2 2 2 2 2 2	113 Uut Ununtrium (284) 2 8 18 3 2 8 18 32 18 3 2 18 3 2 8 18 32 18 32 18 32 32 18 32 32 18 32 32 18 32 32 18 32 32 32 18 32 32 32 32 32 32 32 32 32 32	114 28 Uuq Ununquadium (289)	115 Uup Unupentium (288) 115 18 18 18 18 18 18 18 18 18 18	116 Uuh Ununhexium (292) 116 12 13 13 13 13 13 13 13 13 13 13	117 Uus ^{Uhunseptum}	118 Uuo Ununoctium (294) ² 8 18 32 32 18 8	KLZZORG
				For elements with no stable isotones, the mass number of the isotone with the longest half-life is in parentheses															

or elements with no stable isotopes, the mass number of the isotope with the longest hair-life is in parentneses

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/

Determining Material Densities

Metal and Wood Block Densities:

1) Determine Mass (grams) with flattop scale.

2) Determine Volume (cubic cm) with ruler

Length x height x width

3) Only measure the thick redwood block and oak blocks

$$Denisty = \frac{mass}{volume} \text{ or } D = \frac{m}{v}$$

Earth's Layered Structure

- 1) The Earth is Vertically Arranged into Ten Density Layers
- 2) Each Layer has Unique Physical and Chemical Properties
- 3) Layers are Arranged According to Density Value, as Controlled by Gravity

4) Densest Solid = Core

Least Dense Solid = Crust

Earth's Interior

Copyright © 2005 Pearson Prentice Hall, Inc.

Topography of Earth's Ocean Floors

Cross-Section Profile of an Ocean Basin

Large-Scale Ocean Bottom Features

- ✓ Continental shelf, slope, and rise
- ✓ Abyssal plains and hills
- ✓ Mid-ocean ridge and rift valley
- ✓ Oceanic islands, seamounts, and guyots
- ✓ Ocean trench

Earth's Continents and Ocean Basins

1) Two Different Types of Crust

- ✓ Continental Granitic
- ✓ Oceanic Gabbroic

2) Continental Crust

- ✓ Lighter (2.7 g/ml)
- ✓ Thicker (30 km)
- ✓ High Standing (1 km elev.)

3) Oceanic Crust

- ✓ Denser (2.9 g/ml)
- ✓ Thinner (7 km)
- ✓ Low Standing (- 4 km elev.)

Two Primary Types of Earth Crust

1) Two Different Types of Crust

- ✓ Continental = Granitic
- \checkmark Oceanic = Gabbroic

2) Continental Crust

- ✓ Less dense (2.7 g/ml)
- ✓ Thicker (30 km)
- ✓ High Standing (1 km elev.)

3) Oceanic Crust

- ✓ Denser (2.9 g/ml)
- ✓ Thinner (7 km)
- ✓ Low Standing (- 4 km elev.)

Oceanic Crust Gabbroic Rock

Continental Crust Granitic Rock

THE TECTONIC PLATES

Key Features:

Crust and uppermost
 mantle make up lithosphere

Seven major and 10 minor
 lithospheric plates

- Plates are 100 km thick
- ✓ Plates are strong and rigid

 Plates isostatically "float" on fluid-like asthenosphere

Plates are mobile, moving rates of centimeters per year

Earth's Lithospheric Plates

Isostasy

40 Continental Crust 70 5 km 2.7 gm/cm³ km Oceanic Crust 3.0 gm/cm³ Mantle Rocks 3.3 gm/cm³

Wooden blocks of different sizes float to different heights (and depths) in equilibrium with the water it floats in.

Likewise, continental and oceanic crust are in equilibrium, floating on the asthenosphere in the upper mantle.

The density of rocks in continental crust are less dense than rocks in oceanic crust.

Concept of Buoyancy

1) Buoyancy is an important force on objects immersed in a fluid.

2) Buoyancy is the fluid pressure exerted on an immersed object equal to the weight of fluid being displaced by the object.

3) The concept is also known as Archimedes's principle

- Principle applies to objects in the air and on, or in, the water.
- Principle also applies to the crust "floating" on the mantle, which is specially termed "isostacy".
- 4) Density is a controlling factor in the effects of buoyancy between an object and its surrounding immersing fluid
 - The greater the difference in density between the object and the fluid, the greater the buoyancy force = sits high

The lesser the difference in density between the object and the fluid, the lesser the buoyancy force = sits low

Example of Buoyancy: Boat on a Lake

Question: Can you estimate the ship's mass (weight), based on the ship's displacement and using Archimedes' Principle?

Isostasy: Crust *Floating* in Mantle

1) Isostatic Equilibrium Between Lithosphere and Asthenosphere

2) Isostatic Adjustments Made Over Geologic Time When A Layer's Density and/ or Thickness Changes

4) Isostatic Adjustments Produce Vertical Movement of Crust – Uplift or Subsidence

The Concept of Isostasy

Defined: state of gravitational equilibrium between the earth's *rigid* lithosphere and *fluid* asthenosphere, such that the tectonic plates "float" in and on the underlying mantle at height and depth positions controlled by plate thickness and density.

The term "isostasy" is from Greek "iso" = equal; "stasis" = equal standing.

Earth's strong rigid plates exert a downward-directed load on the mobile, underlying weaker, plastic-like asthenosphere – pushing down into the mantle.

> The asthenosphere exerts an upward pressure on the overlying plate equal to the weight of the displaced mantle - *isostatic equilibrium* is established.

Mantle will flow laterally to accommodate changing crustal loads over time – this is called isostatic adjustment

Plate tectonics, erosion and changing ice cap cause isostatic disequilibrium

The Isostatic Equilibrium

Isostatic Adjustment - Orogeny

Isostatic Loading and Rebound – Orogeny and Erosion

Isostatic Adjustment -Orogeny

Isostatic Adjustment – Volcanism

Growth of the Hawaiian Islands – Crustal Depression

Isostatic Adjustment – Ice Caps

North American Pleistocene Ice Cap

- ✓ Ice Cap Maximum: 20,000 ya
- ✓ Ice Cap Retreat: By 6,000 ya
- ✓ Last 6,000 years:
 - \succ Sea level rising = 13 meters
 - Land uplifting = Variable

 ✓ To establish an accurate rate of uplift, you need to take into account eustatic sea level rise with uplifting

20,000 years ago

North American Pleistocene Ice Cap

Ice Cap Maximum: 20,000 ya

Ice Cap Retreat: Today

✓ Land around Hudson Bay 150 meters higher (above sea level), compared to 6000 years ago. Global sea level also rose 13 meters.

✓ To establish an accurate rate of uplift, you need to add rise in sea level to uplift amount to get true amount of uplift.

Isostatic Equilibrium and Thickness

- The One to Eight Rule -

Icebergs of different thicknesses

Crust of different thicknesses

1) For icebergs and continental crust, apply the **1-to-8 rule**, assuming ice or continental crust is in isostatic equilibrium.

2) Continental crust at sea level averages about <u>35 kilometers thick</u>. (1 km = 0.6 miles.)

3) How thick must the crust be to support a:
 1-kilometer high mountain belt?
 2-kilometer high mountain belt?
 km 5-kilometer high mountain belt?

Modeling Earth's Isostasy

Using Wood Blocks and Water to Understand the Key Concepts of Isostatic Equilibrium and Adjustment

- Density of Floating Blocks
- Thickness of Floating Block
- Density of Liquid Water

The Lab Model:

- 1) Oak as Ocean Crust
- 2) Redwood as Continental Crust
 - Thick = Mountains
 - Thin = Low-lying Regions

3) Water as the Underlying Mantle

Density/Thickness – Buoyancy Relationship

Modelling Wood Block Behavior in Water:

- 1) Density of wood in relation to water density determines level of buoyancy: (percentages in/out of water)
- 2) Thickness of block determines absolute height of block in and out of water
- 3) Compare redwood and oak wood blocks floating in water to that of continental and oceanic crust floating the mantle
- 4) Keep in mind the differences in BOTH *density* and *thickness* of the two different blocks and the two different types of crust
- 5) Note that high-standing floating objects require a much deeper bottom portion to maintain (hold up) the high-standing portion.

ess dense blocks

Crust

More dense water

The Plate Tectonic Revolution

Plate Tectonics!

We Live on a Very Active Planet

The Earth has been *Rocking It* every single day of its 4.6 billion year life....and its only at its mid-point in lifespan

Dynamics of a Restless Planet Earth's Crust Exhibits Extensive Fault Activity

 ✓ Evidence of faulting stretching over billions of years of time

 ✓ Worldwide occurrence of local and regional-scale faulting occur along belt-like regions

✓ Faulting and associated quakes found in both continental and oceanic settings

Crustal Plate Boundaries

Great San Fran EQ of 1906

Dynamics of a Restless Planet

Earth's Surface Exhibits a Long History of Volcanic Activity

- ✓ Billions of years of volcanic activity
- ✓ Widespread evidence of regional-scale volcanism occur in belt-like exposures
- ✓ Volcanism found in both continental and oceanic settings

Dynamics of a Restless Planet

Earth Exhibits a Long History of Mountain Building Events

 ✓ Activity stretching over billions of years of time

 ✓ Numerous belt-like regions of exposed crustal rocks show intense deformation

Present-day Mountain Belt of Folded and Faulted Crust

What is the Relationship Between Earthquakes, Active Volcanoes, Globalscale Seafloor Features, and Plate

Global-Scale Earthquake Patterns Observations

- 1) Narrow earthquake traces at mid-ocean ridges and transform systems
- 2) Broad earthquakes traces for trenches and collision boundaries

Worldwide Earthquakes – Shallow versus Deep Observations

- 1) Shallow earthquakes trace all the plate boundaries
- 2) Deep earthquakes trace the trench-volcanic arc (subduction) systems

Global-Scale Volcanic Patterns

1) Active volcanoes trace mid-ocean ridges and volcanic arcs systems

2) Active "arc" volcanoes trace the subduction-related plate boundaries

Comparing Earthquake and Volcano Data to Plate Boundaries

- 1) Compare shallow earthquakes locations with plate boundaries
- 2) Compare deep earthquakes with trenches and subduction zones
- 3) Compare arc volcanoes with trenches and subduction zones.

Volcano Distribution

Global Earthquake Distribution Coincides with Active Volcanoes

✓ Most active faults are located along curvi-linear belts where both, active volcanism and mountain building are occurring

✓ Earthquakes and active volcanoes trace out the edges of tectonic plates

http://d3tt741pwxqwm0.cloudfront.net/WGBH/conv16/conv16-int-tectonic/index.html

Active Volcanoes, Seafloor Features, and Plate Tectonics?

- 1) Active volcanoes trace mid-ocean ridges and deep-sea trench systems
- 2) Major earthquakes also trace those features, plus major strike slip faults
- 3) Traces of major earthquakes overlap nicely with active volcanoes

Earth's Geography and Tectonic Distas

 Earth's major surface features are primarily the result of plate tectonic motion and processes
Most of Earth's earthquakes and volcanism are the result of plate tectonic motion and processes

PLATE TECTONICS - The Plates

Key Concepts

1) Earth's crust and uppermost mantle broken up into 16 mobile, rigid slabs called lithospheric plates

2) Lithospheric plates ride independently atop the underlying, p

PLATE TECTONICS - The Plates

Key Concepts

1) Earth's crust and uppermost mantle broken up into 16 mobile, rigid slabs called lithospheric plates

2) Lithospheric plates ride independently atop the underlying, p

PLATE TECTONICS - Plate Boundaries

Key Concepts

1) Three types of dynamic lithospheric plate boundaries:

Divergent, Convergent, and T

2) Divergent boundaries

- Continental rifting Rift Va
- Seafloor-spreading = MOR
- Basalt Volcanism

3) Convergent boundaries

- Subduction = Trenches/Ar
- Terrane accretion
- Continental collision

4) Transform boundaries

- Strike-slip faulting
- No Volcanism

1) Seafloor Spreading = Greation of New Oceanic Plate

- Coincides with mid-ocean ridges
- Divergent plate boundary
- Tholiietic basaltic volcanism

2) Subduction = Destruction of Old Oceanic Plates

- Coincides with deep sea trenches and volcanic arcs
 - Convergent plate boundary
- Explosive Andesitic volcanism

Animation of Overview of Plate Tectonics – on YouTube

Seafloor Spreading and Subduction

Seafloor Spreading

- Constructive
- ✓ Tensional normal faulting
- ✓ Shallow earthquakes
- ✓ Decompress mantle melting
- ✓ Basaltic volcanism
- ✓ Mid Ocean Ridge and Facture
- ✓ Divergent plate boundaries

<u>Subduction</u>

- Destructive
- ✓ Compression thrust faulting
- ✓ Shallow to deep earthquakes
- ✓ Dewatering mantle melting
- Explosive andesitic volcanism
- ✓ Trench Volcanic Arc Pair

Subduction

Convergent oceanic plate boundarie Volcanic Arc

Trench

Seafloor Spreading

Types of Plate Tectonic Boundaries

Divergent: Ocean-ocean = mid-ocean ridge; Continental-continental = cont. rift valley

Convergent: Divergent: Ocean-ocean = mid-ocean ridge; Continental-continental = cont. rift valley ; Ocean-continental = trench/continental margin arc; Continental-continental = continental collision zone

Transform: Divergent: Ocean-ocean = ocean fracture zone; Continental-continental = continental fracture zone.

Three Types of Convergent Plate Boundaries

Convergence involving an oceanic plate will have subduction occurring

Subduction-related convergence produces a deepsea trench plus active volcanic arc

- The Pacific Ring of Fire – Active Volcanoes Associated with Deep Sea Trenches

The Ring of Fire is Fueled by Subduction

Earthquakes Associated with Oceanic Convergent Plate

A Well-Studied Subduction System The Japan Trench-Arc System

Plate Motion - Direction & Speed

Yellowstone

Hawaii

Iceland

Hawaiian Island Volcanic Hot Spot Chain

Hawaiian Hot Spot and Pacific Plate Motio

<u>Key Points:</u>

✓ Hot spot plume anchored in mantle = assumed to be stationary

✓ Distance and age between linear sequence of hot spot-generated volcanic centers indicates the *direction* and rate of motion of lithospheric plate

Hawaiian hot spot is beneath the Big Island today

Determining Plate Direction and Speed for Hot Spot Traces Speed Calculation

- Rate = Distance / Time
- Plate speed measuring cm's/yr
- Km \rightarrow cm Conversion: 10⁵ cm = 1 km
- 1×10^6 yr = 1 million yr
- Distance: Between Volcanic Centers (use bar scale on map with ruler)
- Time: Age difference two Islands or Seamounts
- Plate moves towards older volcanic centers

Plate movement direction towards older volcanoes/islands

Determining Plate Direction and Speed

© 2012 Pearson Education, Inc.

Emperor – Hawaiian Volcanic Island/Seamount Chains

Alaska

Hawaiian Hot Spot and Pacific Plate Motion

Major bend in the hot spot trace between Hawaiian and Emperor segments

The Yellowstone Hot Spot – Exam Problem

Key Points:

✓ Hot spot plume anchored in mantle = assumed to be *stationary*

 Distance and age between linear sequence of hot spot- generated volcanic centers indicates the *direction and rate* of motion of lithospheric plate

Evidence for Seafloor Spreading and Oceanic Plate Motion Magnetic Polarity-Reversal Anomalies of Seafloor Rocks

Example: North Atlantic

Magnetic Anomalies of Earth's Seafloors

Earth's seafloors grow at mid-ocean ridges and rises by the seafloor spreading process

Earth's magnetic field reverses polarity many times during the formation of basaltic seafloor basins, producing a distinctive magnetic pattern in the seafloor rocks that can be dated

Age of Earth's oceanic crust (in millions of years)

© 2007 Encyclopædia Britannica, Inc.

Paleomagnetic Anomalies and Age of Earth's Seafloors

Determining Plate Directions and Speed for Seafloor Spreading Centers Speed Calculation

- Rate = Distance / Time
- Plate speed measuring cm's/yr
- Km \rightarrow cm Conversion: 10⁵ cm = 1 km
- 1×10^6 yr = 1 million yr
- Distance: Between Age-paired Magnetic Stipes across MOR (use scale on map with ruler)
- Time: Age difference of Magnetic Stripes
- Directions plate move are away from mid-ocean ridge (spreading center), perpendicular to ridge axis
- Make sure units cancel when doing conversions

Mid-Ocean Ridge Spreading Rate Example

Calculation Set Up:

 $\frac{1,000 \text{ km}}{54,000,000 \text{ years}} \times \frac{100,000 \text{ cm}}{1 \text{ km}} =$

= 1.9 cm/year

Measure distance from mid-ocean ridge out to desired dated magnetic anomaly stripe (see yellow arrows). Mid-ocean ridge stripe is zero age. Get average spreading rate for either plate by dividing distance by the age of the magnetic strip (at arrow head), Convert from kilometers to centimeters to get average spreading rate in centimeters per year.

Direction of plate motion is towrds older anomalies and perpendicular to stripes

Mid-Ocean Ridge Speading Problem Example

Juan de Fuca Spreading Center Cascade Subduction System

Measure seafloor spreading direction and speed by using age-dated paleomagnetic seafloor anomalies

Measure from center of ridge (age zero red stripe) out to the 10-My-age dark green stripe

Measure for both the Pacific Plate and the Juan-de-Fuca Plate

Juan de Fuca Spreading Center Cascade Subduction System

Transform Plate Boundary Motion

Transform Plate Boundaries have two plates that laterally move past one another in opposite directions.

The rate of lateral offset and relative lateral movement can be determined by using a dated offset marker

Determining Plate Motion for Transform Faults

Speed Calculation

- Rate = Offset Distance / Age of Offset Feature
- Plate speed measuring cm's/yr
- Km \rightarrow cm Conversion: 10⁵ cm = 1 km
- 1×10^6 yr = 1 million yr
- Distance: Split Offset Marker distance (use scale on map with ruler)
- Time: Age difference of Offset Marker
- Make sure units cancel when doing conversions

Transform Fault Motion Problem Example

Calculation Set Up:

 $\frac{600 \text{ km}}{15,000,000 \text{ years}} \times \frac{100,000 \text{ cm}}{1 \text{ km}} =$

= 4 cm/year of average transform offset along fault over the the last 15 million years

The relative strike-slip motion across this fault is **left-lateral**

Left lateral because the offset marker on the opposite side of the fault (relative to your viewing position) moved towards the left. This works for both sides of the fault that you view the marker from

Transform Fault Offset Problem Example
San Andreas Transform Fault Offset

San Andreas Fault Motion

Determining Plate Direction and Speed for Transform Faults

Speed Calculation

- Rate = Offset Distance / Age of Offset Feature
- Plate speed measuring cm's/yr
- Km \rightarrow cm Conversion: 10⁵ cm = 1 km
- 1×10^6 yr = 1 million yr
- Distance: Split Offset Marker distance (use scale on map with ruler)
- Time: Age difference of Offset Marker
- Make sure units cancel when doing conversions

The Mobile Lithospheric Plates

Convergent = Black line/Blue shading **Divergent** = Purple line **Transform** = Red line